1)Дан треугольник ABC с вершинами А (11;-2;-9), В (2;6;-4) С (8;-6;-8)а) ВСser = ((2+8)/2, (6+-6)/2, (-4+-8)/2) = ( 5, 0 , -6 ) б) Найдите координаты и длины вектора ВС
в) Найдите вектор АВ + ВС
Тут просто два вектора нарисовать, причем второй вектор начинается в точке Б. Затем соединить вершины А и С. г) Докажите перпендикулярность векторов АВ и АС
Рисовать, иначе не увидишь. Можно вычислить косинус, если равен нулю - значит перпендикулярны. Но это вряд ли математика 5-го класса. 2)Даны вершины треугольника А (1 3 0) В (1 0 4) С (-2 1 6) Найти косинус угла А этого треугольника 3)Даны три вершины параллелограмма АВСД А (0 2 -3)В (-1 1 1)С (2 -2 -1)Найдите координаты четвертой вершины Д
Пусть размеры таблицы - n*m. Тогда изначальная сумма под слонами была 1*1 + 1 *n + m*1 + n*m = (n + 1) + m(n + 1) = (n+1)(m+1).
Пусть расстояние, на которое ходили слоны - k. Слоны ходят по диагонали, поэтому их координаты по вертикали или горизонтали изменияются на одно и то же число k.
б) Найдите координаты и длины вектора ВС
в) Найдите вектор АВ + ВС
Тут просто два вектора нарисовать, причем второй вектор начинается в точке Б. Затем соединить вершины А и С.
г) Докажите перпендикулярность векторов АВ и АС
Рисовать, иначе не увидишь. Можно вычислить косинус, если равен нулю - значит перпендикулярны. Но это вряд ли математика 5-го класса.
2)Даны вершины треугольника А (1 3 0) В (1 0 4) С (-2 1 6) Найти косинус угла А этого треугольника
3)Даны три вершины параллелограмма АВСД А (0 2 -3)В (-1 1 1)С (2 -2 -1)Найдите координаты четвертой вершины Д
Пошаговое объяснение:
Пусть размеры таблицы - n*m. Тогда изначальная сумма под слонами была 1*1 + 1 *n + m*1 + n*m = (n + 1) + m(n + 1) = (n+1)(m+1).
Пусть расстояние, на которое ходили слоны - k. Слоны ходят по диагонали, поэтому их координаты по вертикали или горизонтали изменияются на одно и то же число k.
Посчитаем новую сумму:
(1 + k) * (1 + k) + (1 + k) * (n - k) + (m - k) * (1 + k) + (n - k) * (m - k) =
(1 + k) * ( 1 + k + n - k + m - k) + (n - k) * (m - k) =
(k + 1) * (n + m - k + 1) + n * m - k * (n + m) + k * k =
k * (n + m) - k * k + k + n + m - k + 1 + n *m - k * (n + m) + k * k =
n + m + 1 + n *m =
(n + 1)(m + 1).
Получили то же самое число, что и требовалось доказать.