прямые а и в пересекаются. на прямой а выбраны 2 точки,а на прямой 3 точки. Выбранные точки соединены между собой. сколько треугольников образуется при этом?
ответ: Если первый за 60 часов, то второй за 15 часов; если первый за 18 часов, то второй за 36 часов. (вырывают котлован работая самостоятельно).
Пошаговое объяснение: Пусть за х (ч) может вырыть котлован первый экскаватор самостоятельно , второй сможет за у (ч), тогда производительность первого 1÷х=1/х (котл/ч), а производительность второго 1÷у=1/у (котл/ч) и совместная производительность будет 1÷12=1/12 (котл/ч). Если первый выполнит 1/3 часть всей работы, то время затраченное первым экскаватором будет (1/3)÷(1/х) (ч), а если второй выполнит оставшуюся 1-(1/3)=2/3 часть всей работы, то его затраченное время будет (2/3)÷(1/у) (ч) и всего затратят 30 (ч). Составим два уравнения:
(1/х)+(1/у)=1/12
(1/3)÷(1/х)+(2/3)÷(1/у)=1/30
Выделим в первом уравнении производительность первого экскаватора (1/х):
Обозначим слона как a а его номер a1 . Значит у нас имеется слоны А1 А2 А3 А4 А5 а6 А7 а8 вес всех этих слонов равен А1+ А2+А3+А4+А5+А6+А7+ А8 РОВНО К
Пошаговое объяснение:А3 РОВНО А1 +А2
А4 =А2+ А1 +А2
А5 = 3А2+2А1
А6= 5А2+3А1
А7= 8А2+5А1
А8 =13А2+8А1
Откуда
А1+А2+А3+А4+А5+А6+А7+А8=33А2+21А1
После чего делим их на три кучки в Кучке С будут слоны А7,А5,А6 , в Кучке В будут слоны А3, А4, А8 . Можно заметить что слон А3 равен маме слонов А1 +А2. Поэтому можно сначала взвесить кучки А и В а потом в Кучке В заменить слона А3 на слонов А1 + А2. И при этом если кучки равны значит никто не похудел а если какая то меньше значит там какой-то слон похудел
ответ: Если первый за 60 часов, то второй за 15 часов; если первый за 18 часов, то второй за 36 часов. (вырывают котлован работая самостоятельно).
Пошаговое объяснение: Пусть за х (ч) может вырыть котлован первый экскаватор самостоятельно , второй сможет за у (ч), тогда производительность первого 1÷х=1/х (котл/ч), а производительность второго 1÷у=1/у (котл/ч) и совместная производительность будет 1÷12=1/12 (котл/ч). Если первый выполнит 1/3 часть всей работы, то время затраченное первым экскаватором будет (1/3)÷(1/х) (ч), а если второй выполнит оставшуюся 1-(1/3)=2/3 часть всей работы, то его затраченное время будет (2/3)÷(1/у) (ч) и всего затратят 30 (ч). Составим два уравнения:
(1/х)+(1/у)=1/12
(1/3)÷(1/х)+(2/3)÷(1/у)=1/30
Выделим в первом уравнении производительность первого экскаватора (1/х):
(1/х)+(1/у)=1/12; 1/х=(1/12)-(1/у); 1/х=(у-12)/12у
Подставим это значение во второе уравнение:
(1/3)÷((у-12)/12у))+(2/3)÷(1/у)=30
12у/(3у-36)+2у/3=30
36у+6у²-72у=270у-3240
6у³-306у+3240=0
у²-51у+540=0
D= (-51)² - (4*1*540) = 441
у₁=(51-21)/2=15 (ч) нужно второму экскаватору, чтобы вырыть котлован работая самостоятельно.
(1/12)-(1/15)=1/60 (котл/ч) производительность первого экскаватора.
1÷60=60 (ч) нужно первому экскаватору, чтобы вырыть котлован работая самостоятельно.
у₂=(51+21)/2=36 (ч) нужно второму экскаватору, чтобы вырыть котлован работая самостоятельно.
(1/12)-(1/36)=1/18 (котл/ч) производительность первого экскаватора.
1÷(1/18)=18 (ч) нужно первому экскаватору, чтобы вырыть котлован работая самостоятельно.
Обозначим слона как a а его номер a1 . Значит у нас имеется слоны А1 А2 А3 А4 А5 а6 А7 а8 вес всех этих слонов равен А1+ А2+А3+А4+А5+А6+А7+ А8 РОВНО К
Пошаговое объяснение:А3 РОВНО А1 +А2
А4 =А2+ А1 +А2
А5 = 3А2+2А1
А6= 5А2+3А1
А7= 8А2+5А1
А8 =13А2+8А1
Откуда
А1+А2+А3+А4+А5+А6+А7+А8=33А2+21А1
После чего делим их на три кучки в Кучке С будут слоны А7,А5,А6 , в Кучке В будут слоны А3, А4, А8 . Можно заметить что слон А3 равен маме слонов А1 +А2. Поэтому можно сначала взвесить кучки А и В а потом в Кучке В заменить слона А3 на слонов А1 + А2. И при этом если кучки равны значит никто не похудел а если какая то меньше значит там какой-то слон похудел