В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
adadad2
adadad2
23.02.2020 01:02 •  Математика

Пусть m — точка пересечения диагоналей ac и bd параллелограмма abcd, o — произвольная точка. докажите, что вектор om =1/4(oa + ob + oc+od), понятно что oa, ob, oc и od вектора)

Показать ответ
Ответ:
kseniafilipovich09
kseniafilipovich09
04.10.2020 10:32
По свойствам диагоналей параллелограмма AM = MC и DM = MB.

1) В ▲AOC: OM - медиана. На продолжении медианы OM поставим точку K так, чтобы OM = MK.
Значит в четырехугольнике OAKC диагонали AC и OK пересекаются в точке O и ею делятся пополам. Поэтому OAKC - параллелограмм.

Аналогично OBKD  - параллелограмм.

2) за правилом "параллелограмма" сложения векторов,
векторы: OA + OC = 2·OM, а также OB + OD = 2·OM
Значит, OA + OC + OB + OD = 4·OM
Имеем: OM = ¼·(OA + OC + OB + OD)

Доказано.
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота