Пусть X, Y , Z – случайные величины: X – выручка фирмы , Y – ее затраты , Z = X – Y – прибыль . Найти распределение прибыли Z , если затраты и выручка независимы и заданы распределениями :
Второй график - график вс для построения y₂ - график слагаемых |x+2| и |x-2|
Третий график - график y₂ в случае a=1
Четвертый график - изображение y₁ и разные варианты y₂, при разных значениях параметра а
а=1, а=1/2, а=1/4, а=-1/4, а=-1/2, а=-1 (при а=0 y₂ с осью Ox)
В случае a=1/2 крылья графика y₂ параллельны крыльям графика y₂ - значит они не пересекутся. (соответственно, решений не будет)
Как только мы сделаем a меньше, чем 1/2, наклон y₂ будет более пологий, чем у крыльев y₁ и значит крылья пересекутся - справа будет одно пересечение прямых и слева одно - значит будет два решения (например, смотри график при а=1/4
Теперь, каким может быть минимальное значение параметра а? (рассматриваем далее только значения a<1/2.)
В случае, который разбираю внизу справа на фото - это случай, когда вершина графика y₁ совпадет с правым углом y₂ - решаю уравнение и нахожу, что это происходит при а=-3/4 - в этом случае будет одно решение (x=2)
для всех больших значениях параметра решения будет два.
1) Если купить три билета этой лотереи, то обязательно выиграешь. - неверно. (выражение "каждый третий билет выигрывает" означает только то, что среди всех билетов лотереи, 1/3 билетов выигрывает)
2) Среди мальчиков не менее одного выигравшего. - верно (это следует из условия, нам известно что хотя бы 1 билет выиграл)
3) У Никиты проигрышный билет - неверно (про билет Никиты ничего не говорится, он может выиграть или проиграть)
4) Среди мальчиков не менее одного проигравшего - верно (это следует из условия, нам известно что хотя бы 1 билет проиграл)
a∈(-3/4; 1/2)
Пошаговое объяснение:
Прилагаю фото решения. Наверху преобрахование уравнения - уравниваю двае функции:
y₁=a(|x+2|+|x-2|)
y₂=|x-2|-3
Первый график - график y₁
Второй график - график вс для построения y₂ - график слагаемых |x+2| и |x-2|
Третий график - график y₂ в случае a=1
Четвертый график - изображение y₁ и разные варианты y₂, при разных значениях параметра а
а=1, а=1/2, а=1/4, а=-1/4, а=-1/2, а=-1 (при а=0 y₂ с осью Ox)
В случае a=1/2 крылья графика y₂ параллельны крыльям графика y₂ - значит они не пересекутся. (соответственно, решений не будет)
Как только мы сделаем a меньше, чем 1/2, наклон y₂ будет более пологий, чем у крыльев y₁ и значит крылья пересекутся - справа будет одно пересечение прямых и слева одно - значит будет два решения (например, смотри график при а=1/4
Теперь, каким может быть минимальное значение параметра а? (рассматриваем далее только значения a<1/2.)
В случае, который разбираю внизу справа на фото - это случай, когда вершина графика y₁ совпадет с правым углом y₂ - решаю уравнение и нахожу, что это происходит при а=-3/4 - в этом случае будет одно решение (x=2)
для всех больших значениях параметра решения будет два.
2, 4
Пошаговое объяснение:
1) Если купить три билета этой лотереи, то обязательно выиграешь. - неверно. (выражение "каждый третий билет выигрывает" означает только то, что среди всех билетов лотереи, 1/3 билетов выигрывает)
2) Среди мальчиков не менее одного выигравшего. - верно (это следует из условия, нам известно что хотя бы 1 билет выиграл)
3) У Никиты проигрышный билет - неверно (про билет Никиты ничего не говорится, он может выиграть или проиграть)
4) Среди мальчиков не менее одного проигравшего - верно (это следует из условия, нам известно что хотя бы 1 билет проиграл)