Пусть весь путь будет S, а время в пути с горы равно t ч Тогда длина пути с горы равна произведению скорости на время= 6t км Время, затраченное на подъем в гору, пусть будет у часов Длина пути в гору равна 3у км, и она равна длине пути с горы. 3у=6t у=2t часов Время, затраченное на горизонтальный путь туда и обратно по горизонтальному участку равно 5-(t+2t)=5-3t По формуле S=v*t со скоростью 4 км/ч пройдено расстояние 4*(5-3t) Со скоростью 3 км/ч - 3*2t=6t Со скоростью 6 км/ч - 6*t S=4*(5-3t)+6*t+6*t S=20-12t+12t S=20 км
Если было поровну рыцарей и лжецов -значит их было четное количество. Когда первый из 2015 сказал: Когда я уеду, на острове станет поровну рыцарей и лжецов, он мог оказаться рыцарем, т.к. после его уезда оставалось четное кол-во человек (но мог быть и лжецом). Когда уезжал 2 человек и произносил эту фразу -он определенно был лжец, т.к. после его уезда оставалось 2013 человек-т.е. нечетное кол-во. Соответственно, каждый человек, который уезжал четным был лжецом. Выясним сколько их было: 2, 4, 6, , 2014 2014=2+(n-2)2 2012=(n-1)2 n-1=1006 n=1007 -лжецов было точно. Пройдемся от начала, с новой инфой, что лжецов было ≥1007.
1 случай. Если первый уезжающий -рыцарь, тогда из 2014 поровну рыцарей и лжецов, а также лжецов ≥1007, значит осталось 1007 рыцарей и 1007 лжецов. Тогда с учетом первого рыцаря на острове было: 1007+1=1008 рыцарей.
2.Случай. Если первый уезжающий -лжец. из 2014 человек лжецов>1007, а рыцарей <1007. Всего лжецов уже >1008 (из 2015 человек) 3ий уезжающий оставил после себя 2012 человек т.к. лжецов уже >1008, поровну уже ни при каком случае не получится. (т.к. чтобы из 2012 чел было поровну и л и р, их должно быть по 1006, из 2010 -1005 и меньше,) Таки образом, последний человек который был 2015 по счету -был рыцарем, так как после него осталось равное кол-во лжецов и рыцарей =0) итого : 2014 лжецов и 1 рыцарь.
Тогда длина пути с горы равна произведению скорости на время= 6t км
Время, затраченное на подъем в гору, пусть будет у часов
Длина пути в гору равна 3у км, и она равна длине пути с горы.
3у=6t
у=2t часов
Время, затраченное на горизонтальный путь туда и обратно по горизонтальному участку равно 5-(t+2t)=5-3t
По формуле S=v*t
со скоростью 4 км/ч пройдено расстояние 4*(5-3t)
Со скоростью 3 км/ч - 3*2t=6t
Со скоростью 6 км/ч - 6*t
S=4*(5-3t)+6*t+6*t
S=20-12t+12t
S=20 км
Когда первый из 2015 сказал: Когда я уеду, на острове станет поровну рыцарей и лжецов, он мог оказаться рыцарем, т.к. после его уезда оставалось четное кол-во человек (но мог быть и лжецом). Когда уезжал 2 человек и произносил эту фразу -он определенно был лжец, т.к. после его уезда оставалось 2013 человек-т.е. нечетное кол-во. Соответственно, каждый человек, который уезжал четным был лжецом. Выясним сколько их было:
2, 4, 6, , 2014
2014=2+(n-2)2
2012=(n-1)2
n-1=1006
n=1007 -лжецов было точно.
Пройдемся от начала, с новой инфой, что лжецов было ≥1007.
1 случай. Если первый уезжающий -рыцарь, тогда из 2014 поровну рыцарей и лжецов, а также лжецов ≥1007, значит осталось 1007 рыцарей и 1007 лжецов.
Тогда с учетом первого рыцаря на острове было: 1007+1=1008 рыцарей.
2.Случай. Если первый уезжающий -лжец. из 2014 человек лжецов>1007, а рыцарей <1007. Всего лжецов уже >1008 (из 2015 человек)
3ий уезжающий оставил после себя 2012 человек
т.к. лжецов уже >1008, поровну уже ни при каком случае не получится.
(т.к. чтобы из 2012 чел было поровну и л и р, их должно быть по 1006, из 2010 -1005 и меньше,)
Таки образом, последний человек который был 2015 по счету -был рыцарем, так как после него осталось равное кол-во лжецов и рыцарей =0)
итого : 2014 лжецов и 1 рыцарь.