Вы правы, нужно рассматривать 5 случаев. Каждый случай первоначального набора шаров происходит с вероятностью 1/5.
1) Изначально в урне 4 черных шара и 0 белых. Затем добавляют 3 белых. Найдем вероятность Р1, что все 3 вынутых шара - белые.Всего шаров 7. Вероятность, что первым вынули белый шар равна 3/7. Осталось 6 шаров, из них 2 белых. Вероятность, что второй вынутый шар белый равна 2/6, вероятность, что третий вынутый белый равна 1/5. По теореме о произведении вероятностей: Р1= 3/7 * 2/6 * 1/5 = 1/35
2) Изначально в урне 3 черных шара и 1 белый. Затем добавляют 3 белых. Найдем вероятность Р2, что все 3 вынутых шара - белые. Всего шаров 7, из них 4 белых.
Р2= 4/7 * 3/6 * 2/5 = 4/35
3) Изначально в урне 2 черных шара и 2 белых. Затем добавляют 3 белых. Найдем вероятность Р3, что все 3 вынутых шара - белые. Всего шаров 7, 5 из них - белые.
Р3= 5/7 * 4/6 * 3/5 = 2/7
4) Изначально в урне 1 черный шара и 3 белых. Затем добавляют 3 белых. Найдем вероятность Р4, что все 3 вынутых шара - белые. Всего 7 шаров, из них 6 белых.
Р4= 6/7 * 5/6 * 4/5 = 4/7
5) Изначально в урне 0 черных шара и 4 белых. Затем добавляют 3 белых. Найдем вероятность Р5, что все 3 вынутых шара - белые.
Очевидно, что вероятность равна 1. Р5=1
Найдем общую вероятность. Р=(Р1+Р2+Р3+Р4+Р5) / 5 = 2/5
Вы правы, нужно рассматривать 5 случаев. Каждый случай первоначального набора шаров происходит с вероятностью 1/5.
1) Изначально в урне 4 черных шара и 0 белых. Затем добавляют 3 белых. Найдем вероятность Р1, что все 3 вынутых шара - белые.Всего шаров 7. Вероятность, что первым вынули белый шар равна 3/7. Осталось 6 шаров, из них 2 белых. Вероятность, что второй вынутый шар белый равна 2/6, вероятность, что третий вынутый белый равна 1/5. По теореме о произведении вероятностей: Р1= 3/7 * 2/6 * 1/5 = 1/35
2) Изначально в урне 3 черных шара и 1 белый. Затем добавляют 3 белых. Найдем вероятность Р2, что все 3 вынутых шара - белые. Всего шаров 7, из них 4 белых.
Р2= 4/7 * 3/6 * 2/5 = 4/35
3) Изначально в урне 2 черных шара и 2 белых. Затем добавляют 3 белых. Найдем вероятность Р3, что все 3 вынутых шара - белые. Всего шаров 7, 5 из них - белые.
Р3= 5/7 * 4/6 * 3/5 = 2/7
4) Изначально в урне 1 черный шара и 3 белых. Затем добавляют 3 белых. Найдем вероятность Р4, что все 3 вынутых шара - белые. Всего 7 шаров, из них 6 белых.
Р4= 6/7 * 5/6 * 4/5 = 4/7
5) Изначально в урне 0 черных шара и 4 белых. Затем добавляют 3 белых. Найдем вероятность Р5, что все 3 вынутых шара - белые.
Очевидно, что вероятность равна 1. Р5=1
Найдем общую вероятность. Р=(Р1+Р2+Р3+Р4+Р5) / 5 = 2/5
а) (18,3 + 7,85) – (4,75 + 11,3) = 26,15 – 16,05 = 10,1
б) 14 – ((7,8 + 3,7) – (0,89 + 0,98) – 2,3) = 14 – (11,5 – 1,87 – 2,3) = 14 – 7,33 = 6,67
в) 10 – 2,55 х (7,1 – 3,7) = 10 – 2,55 х 3,4 = 10 – 8,67 = 1,33
г) (1,8 + 0,5) х (2 – 0,7) = 2,3 х 1,3 = 2,99
д) 6,2 – (5,6 – 3,8) х 0,6 = 6,2 – 1,8 х 0,6 = 6,2 – 1,08 = 5,12
е) 10,3 – 3 х (0,4 + 4,8) = 10,3 – 3 х 5,2 = 10,3 – 15,6 = – 5,3
2)
а) (х – 5,7) + 4 = 12,6
х – 5,7 + 4 = 12,6
х – 1,7 = 12,6
х = 12,6 + 1,7
х = 14,3
б) 4,89у + 5,11у – 8 = 13,9
10у – 8 = 13,9
10у = 13,9 + 8
10у = 21,9
у = 21,9 : 10
у= 2,19
3) 5,9а + 6,3а – 14, если а=0,5
(5,9 х 0,5) + (6,3 х 0,5) – 14 = 2,95 + 3,15 – 14 = 6,1 – 14 = – 7,9