Работа с таблицей 1. Заполните таблицу 34. Таблица 34 1% 2% 45% 100% 800% 2. Сравните первую и вторую строки таблицы 34. Как перевести проценты в числа?
Зная диагональ основания пирамиды, найдем сторону основания.
d2 = a2 + a2
42 = 2a2
16 = 2a2
a= √8 = 2√2
Соответственно, площадь основания
S = 8 см2 .
Проведем через вершину правильной четырехугольной пирамиды вертикальное сечение. Поскольку боковые грани пирамиды наклонены к основанию под углом 60 градусов, то сечение образует равносторонний треугольник.
Основание равностороннего треугольника равно 2√2. Откуда высота будет равна
h = √3/2 a
h = √3/2 * 2√2 = √6
Откуда объем правильной пирамиды с четырехугольником в основании равен
Даны уравнения двух сторон ромба 2x-5y-1=0, 2x-5y-34=0 и уравнение одной диагонали x+3y-6=0.
Находим 2 вершины ромба как точки пересечения сторон с диагональю.
{2x-5y-1=0, 2x-5y-1=0
{x+3y-6=0 |x(-2) = -2x-6y+12=0
-11y +11 = 0, отсюда у = 11/11 = 1,
тогда х = 6 - 3у = 6 -3*1 = 3. Точка А(3; 1).
{2x-5y-34=0, 2x-5y-34=0
{x+3y-6=0 |x(-2) = -2x-6y+12=0
-11y - 22 = 0, отсюда у = -22/11 = -2,
тогда х = 6 - 3у = 6 -3*(-2) = 12. Точка С(12; -2).
Находим координаты точки О как середины отрезка АС.
О = ( А(3; 1) + С(12; -2))/2 = (7,5; -0,5).
Вектор АС = (С(12; -2) - ( А(3; 1)) = (9; -3).
Уравнение АС: дано в задании: x+3y-6=0.
В уравнении перпендикуляра к АС коэффициенты А и В меняются на -В и А: -3x + y + С = 0 Подставим координаты точки О.
-3*7,5 + (-0,5) + С = 0, отсюда С = 23.
ответ: уравнение ВD: -3x + y + 23 = 0 или с положительным коэффициентом при переменной "х": 3х - у - 23 = 0.
Решение.
Объем пирамиды найдем по формуле:
V=1/3 Sh
Зная диагональ основания пирамиды, найдем сторону основания.
d2 = a2 + a2
42 = 2a2
16 = 2a2
a= √8 = 2√2
Соответственно, площадь основания
S = 8 см2 .
Проведем через вершину правильной четырехугольной пирамиды вертикальное сечение. Поскольку боковые грани пирамиды наклонены к основанию под углом 60 градусов, то сечение образует равносторонний треугольник.
Основание равностороннего треугольника равно 2√2. Откуда высота будет равна
h = √3/2 a
h = √3/2 * 2√2 = √6
Откуда объем правильной пирамиды с четырехугольником в основании равен
V=1/3 Sh
V = 1/3 * 8 * √6 = 8√6 / 3
ответ: 8√6 / 3 см3.