Введем обозначения: V1 = 50(км/ч) t1 - время автомобилиста, в которое он двигался со скоростью V1 V2 = 65(км/ч) t2 - время автомобилиста, в которое он двигался со скоростью V2 t - назначенное время. S1 и S2 - пути, которые автомобилист проедет в первом и втором случае. Т.к. проедет он одно и то же расстояние, то S1=S2. Из условия следует, что t1 = t+2, а t2 = t-1 S1=S2 V1t1=V2t2 V1(t+2)=V2(t-1) V1t+2V1 = V2t - V2 50t+2*50 = 65t - 65 t(50-65) = -65-100 t = 165/15 = 11(ч). S1 = V1t1 = V1(t+2) = 50(11+2) = 650(км). ответ: 650км.
С вами был lovelyserafima, удачи! Не забывайте отмечать лучшим и оценивать ответ, если он вам понравился) Будут еще вопросы - задавайте;)
x₁=2; x₂=0,5(3+√29); x₃=0,5(3-√29),
Пошаговое объяснение:
f(x)=x³-5x²+x+10=0;
найдем хотябы один корень уравнения, для чего выпишем все целые делители свободного члена:
10: ±1, ±2, ±5, ±10.
Методом подбора в многочлен x³-5x²+x+10=0 :
1: 1-5+1+10≠0;
-1: -1-5-1+10≠0;
2: 2³-5*2²+2+10=8-20+2+10=0.
О! Зачит 2 - один из корней уравнения. Понижаем степень. Многочлен будет иметь вид:
(х-2)P(x)=0, где
Р(х) - многочлен второй степени, Р(х)=f(x)/(x-2).
Разделим f(x) на (x-2):
x³-5x²+x+10 l x-2
x³-2x² l x²-3x-5
-3x²+x
-3x²+6x
-5x+10
-5x+10
0
x³-5x²+x+10=(x-2)(x²-3x-5)=0;
x²-3x-5=0; D=9+20=29; x₁₂=0,5(3±√29)
x₁=2; x₂=0,5(3+√29); x₃=0,5(3-√29),
V1 = 50(км/ч)
t1 - время автомобилиста, в которое он двигался со скоростью V1
V2 = 65(км/ч)
t2 - время автомобилиста, в которое он двигался со скоростью V2
t - назначенное время.
S1 и S2 - пути, которые автомобилист проедет в первом и втором случае.
Т.к. проедет он одно и то же расстояние, то S1=S2.
Из условия следует, что t1 = t+2, а t2 = t-1
S1=S2
V1t1=V2t2
V1(t+2)=V2(t-1)
V1t+2V1 = V2t - V2
50t+2*50 = 65t - 65
t(50-65) = -65-100
t = 165/15 = 11(ч).
S1 = V1t1 = V1(t+2) = 50(11+2) = 650(км).
ответ: 650км.
С вами был lovelyserafima, удачи! Не забывайте отмечать лучшим и оценивать ответ, если он вам понравился) Будут еще вопросы - задавайте;)