. Изобразите тетраэдр KLMN. а) Постройте сечение этого тетраэдра плоскостью, проходящей через ребро KL и середину А ребра MN. б) Докажите, что плоскость, проходящая через середины Е, О и F отрезков LM, МА и МК, параллельна плоскости LKA. Найдите площадь треугольника EOF, если площадь треугольника LKA равна 24 см2.
а) Проведем
- искомое сечение.
б) В ΔAMK: OF - средняя линия, OF || AK; в ΔMLK: EF - средняя линия, EF || KL.
По теореме п. 10
Площади подобных треугольников
как углы с соответственно параллельными и одинаково направленными сторонами;
поэтому
относятся как квадраты, значит, соответствующих линейных размеров.
Имено́ванные чи́сла — действительные числа (на практике всегда заданные с конечной точностью), являющиеся значением какой-нибудь физической величины, и сопровождающиеся названием единицы измерения, например 2 кг; 3,4 м, 220 В, 1,75 А, 45°30′00′′.
Противопоставляются отвлечённым числам, то есть тем, которые не имеют единицы измерения.
По количеству входящих в числа различных единиц именованные числа делят на и составные именованное число — число, в которое входит единица только одного наименования, например, 3 кг.
Составное именованное число — число, в которое входят единицы различных наименований, например, 3 кг 300 г[1].
Именованные числа называют равными, если равны значения физической величины, выражаемые ими. Например, число 3 кг 325 г равно числу 3,325 кг[1].
. Изобразите тетраэдр KLMN. а) Постройте сечение этого тетраэдра плоскостью, проходящей через ребро KL и середину А ребра MN. б) Докажите, что плоскость, проходящая через середины Е, О и F отрезков LM, МА и МК, параллельна плоскости LKA. Найдите площадь треугольника EOF, если площадь треугольника LKA равна 24 см2.
а) Проведем
- искомое сечение.
б) В ΔAMK: OF - средняя линия, OF || AK; в ΔMLK: EF - средняя линия, EF || KL.
По теореме п. 10
Площади подобных треугольников
как углы с соответственно параллельными и одинаково направленными сторонами;
поэтому
относятся как квадраты, значит, соответствующих линейных размеров.
Имено́ванные чи́сла — действительные числа (на практике всегда заданные с конечной точностью), являющиеся значением какой-нибудь физической величины, и сопровождающиеся названием единицы измерения, например 2 кг; 3,4 м, 220 В, 1,75 А, 45°30′00′′.
Противопоставляются отвлечённым числам, то есть тем, которые не имеют единицы измерения.
По количеству входящих в числа различных единиц именованные числа делят на и составные именованное число — число, в которое входит единица только одного наименования, например, 3 кг.
Составное именованное число — число, в которое входят единицы различных наименований, например, 3 кг 300 г[1].
Именованные числа называют равными, если равны значения физической величины, выражаемые ими. Например, число 3 кг 325 г равно числу 3,325 кг[1].
Пошаговое объяснение: