Можно найти несколько пределов данной числовой последовательности. Для этого нужно посмотреть, что произойдет с ней при стремлении к бесконечности с разными знаками, и в "опасных" точках.
"Опасные" точки сразу видны, это: 1) - знаменатель обращается в 0. 2) - по обычаю проверяется эта точка.
Эта числовая последовательность может быть сведена ко второму замечательному пределу для нахождения пределов: (при →∞)
Выделяем целую часть в дроби:
Используем свойство 2-го замечательного предела, но добавляем степени:
(при →∞)
То есть мы степень не меняли: домножили и разделили.
Посчитаем, что получилось:
(при →∞)
Итак: 1) →+∞ предел равен 2) →-∞ предел равен
3) →0 предел равен:
4) → По правило Лопиталя имеем: 0 (не расписывал, поскольку это очень много и неважно в данном случае, нас это не интересует).
Мы видим, что при стремлении к бесконечности с разными знаками, мы имеем конечное число. В "опасных" точках, скачков нет.
Используя свойства показательной функции, находим, что график делает скачок в некотором интервале (основание должно быть неотрицательным числом, если же взять число из интервала - мы получаем отрицательное основание).
Можно говорить, что данная числовая последовательность является неограниченной (из-за этого интервала).
Если же этого не учитывать, то данная числовая последовательность является ограниченной (это очень грубо).
По условию задачи площадь S поля разбита на 3 части (по дням).
В первый день тракторная бригада вспахала 30% всего поля, то есть 30% * S = 0,3 * S га.
Во второй день бригада вспахала 75% остального. Поскольку, осталось (1 - 0,3) * S га = 0,7 * S га, то тракторной бригадой вспахано 0,75 * 0,7 * S га = 0,525 * S га.
В третий день вспахано оставшихся 14 га.
Имеем 0,3 * S га + 0,525 * S га + 14 га = S га или (1 - 0,3 - 0,525) * S = 0,175 * S = 14 га, откуда S = (14 : 0,175) га = 80 га.
"Опасные" точки сразу видны, это:
1) - знаменатель обращается в 0.
2) - по обычаю проверяется эта точка.
Эта числовая последовательность может быть сведена ко второму замечательному пределу для нахождения пределов:
(при →∞)
Выделяем целую часть в дроби:
Используем свойство 2-го замечательного предела, но добавляем степени:
(при →∞)
То есть мы степень не меняли: домножили и разделили.
Посчитаем, что получилось:
(при →∞)
Итак:
1) →+∞ предел равен
2) →-∞ предел равен
3) →0 предел равен:
4) →
По правило Лопиталя имеем: 0 (не расписывал, поскольку это очень много и неважно в данном случае, нас это не интересует).
Мы видим, что при стремлении к бесконечности с разными знаками, мы имеем конечное число. В "опасных" точках, скачков нет.
Используя свойства показательной функции, находим, что график делает скачок в некотором интервале (основание должно быть неотрицательным числом, если же взять число из интервала - мы получаем отрицательное основание).
Можно говорить, что данная числовая последовательность является неограниченной (из-за этого интервала).
Если же этого не учитывать, то данная числовая последовательность является ограниченной (это очень грубо).
Пошаговое объяснение:
По условию задачи площадь S поля разбита на 3 части (по дням).
В первый день тракторная бригада вспахала 30% всего поля, то есть 30% * S = 0,3 * S га.
Во второй день бригада вспахала 75% остального. Поскольку, осталось (1 - 0,3) * S га = 0,7 * S га, то тракторной бригадой вспахано 0,75 * 0,7 * S га = 0,525 * S га.
В третий день вспахано оставшихся 14 га.
Имеем 0,3 * S га + 0,525 * S га + 14 га = S га или (1 - 0,3 - 0,525) * S = 0,175 * S = 14 га, откуда S = (14 : 0,175) га = 80 га.