Ранее !
найти производную функции: f(x)=x3+2x
1.найти производную функции: f(x)=2x3−x2
2.найти производную функции: f(x)=x4−12x2+2
2.найти производную функции: f(x)=x4+x3+x2+4x
3.найти производную функции: f(x)=(3−x)(x−x2)
3.найти производную функции: f(x)=(x+2)(x2−x+5)
4.найти производную функции: f(x)=x2+1x2−3
4.найти производную функции: f(x)=4−x23+2x
5.найти производную функции: f(x)=(x+1)x
5.найти производную функции: f(x)=(x+5)x
6.дана функция f(x)=2x+1x2. найти значения х ,при которых производная неотрицательна.
6.дана функция f(x)=x2+2x. найти значения х ,при которых производная неположительна.
7.даны функции f(x)=xи g(x)=2x−x2. задайте формулу f(g(x)) и найдите ее производную.
7.даны функции g(x)=xи f(x)=x4−2x. задайте формулу g(f(x)) и найдите ее производную.
Пошаговое объяснение:
1) а)15a(a-b)/40b(a-b)=3a/8b
Поскольку в числителе и знаменателе есть одинаковое значение и оно находится под знаком умножения (в нашем случае а-б) мы можем его взаимно сократить. числа 15 и 40 делятся на 5, поэтому мы сократили их на это число и получили 3/8
б)у^2+у/у=у(у+1)/у=у+1
Тут все проще, в числителе выносим у за скобки и получаем выражение у(у+1), а далее просто сокращаем игрики, получая ответ.
2)
а)(12х-7/15х)+(3х-2/15х)=15х-9/15х=3(5х-3)/15х=5х-3/5х
б)(ах+ау/ху^2)*((х^2)у/3х+3у)=ау(х^3)+а(х^2)(у^2)/3(х^2)(у^2)+3х(у^3)=(ау(х^2))(х+у)/(3х(у^2))(х+у)=ау(х^2)/3х(у^2)
3)(у^2-6у+9/у^2-9)/(10у-30/у^2+3у)=((у-3)^2/(у-3)(у+3))/(10(у-3)/у(у+3))=(у-3/у+3)/(10(у-3)/у(у+3))=((у-3)(у^2+3))/(у+3)(10у-30)=(67*493)/(73*670)
Дана функция y=x^3-9x^2+24x-1.
Производная равна: y' = 3x² - 18x + 24 = 3(x² - 6х + 8).
Приравняем её нулю: 3(x² - 6х + 8) = 0 (множитель в скобках).
x² - 6х + 8= 0. Д = 36 - 32 = 4. х1,2 = (6+-2)/2 = 4; 2.
У функции 2 критических точки: х1 = 2, х2 = 4.
Находим знаки производной на полученных промежутках.
x = 1 2 3 4 5
y' = 9 0 -3 0 9 .
Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.
Минимум функции в точке х = 2, у = 19.
Максимум в точке х = 4, у = 15.
Возрастает на промежутках (-∞; 2) и (4; +∞).
Убывает на промежутке (2; 4).
На заданном промежутке [-1; 5] минимум будет в точке х = -1, у = -35. а максимум в точке х = 2, y = 19.
В точке х = 5 значение у = 19. Так что имеем 2 максимума на заданном промежутке.