Производная заданной функции равна Критические точки находим, приравняв производную нулю:
Первая точка: х = 0. Ещё 2 точки находим, решив уравнение х² - 1 = 0 х² = 1 х = +1 и х = -1. Значение х = 1 не входит в заданный промежуток, его отбрасываем. Если значение производной меняется + на -, то это максимум, и наоборот. Вот расчёт производной вблизи критических точек: х = -1.1 -0.9 -0.1 0.1 y' = 0.924 -0.684 -0.396 0.396 . Поэтому х = 0 это минимум, х =-1 это максимум.
а)
2x +3 y = 10
-2x + 5y = 6
2x+3y = 10
-2x = 6 - 5y
2x+3y = 10
2x = -6 + 5y
Подставляем -6 + 5у вместо 2х в первое уравнение
-6 + 5y + 3y = 10
8y = 10 + 6
8y = 16
y = 16/8
y = 2
Теперь y = 2 подставим в уравнение 2x = -6 + 5y
2x = -6 + 5*2
2x = -6 + 10
2x = 10 - 6
2x = 4
x = 4/2
x = 2
Проверяем (Подставляем x и y в исходные уравнения)
2*2 +3*2 = 10
4 + 6 = 10
Верно
-2*2 + 5*2 = 6
-4 + 10 = 6
10 - 4 = 6
Верно.
б)
3x - y =2
x + 2y = 10
3x - y =2
x = 10 - 2y
Подставялем в первое уравнение 10 - 2y вместо x
3*(10-2y) - y = 2
30 - 6y - y = 2
-7y = -28
7y = 28
y = 28/7
y = 4
Подставляем y = 4 в уравнение x = 10 - 2y
x = 10 - 2*4
x = 10 - 8
x = 2
Проверяем, подставив y = 4 и x = 2 в исходные уравнения
3*2 - 4 = 2
6 - 4 = 2
Верно
2 + 2*4 = 10
2 + 8 = 10
Верно.
Критические точки находим, приравняв производную нулю:
Первая точка: х = 0.
Ещё 2 точки находим, решив уравнение х² - 1 = 0
х² = 1 х = +1 и х = -1.
Значение х = 1 не входит в заданный промежуток, его отбрасываем.
Если значение производной меняется + на -, то это максимум, и наоборот.
Вот расчёт производной вблизи критических точек:
х = -1.1 -0.9 -0.1 0.1
y' = 0.924 -0.684 -0.396 0.396 .
Поэтому х = 0 это минимум, х =-1 это максимум.