Для того чтобы найти наибольший общий делитель необходимо разложить каждое из заданных чисел на простые множители. Потом выписать отдельно только те множители которые входят во все заданные числа. Потом перемножить между собой выписанные числа.
Чтобы найти наименьшее общее кратное заданных чисел,нужно выписать все простые множители, входящие хотя бы в одно из данных чисел,каждый из взятых множителей возвести в наибольшую из тех степеней, с которыми он входит в заданные числа и их перемножить.
1) Взаимно простые числа - такие, что не имеют общих делителей, кроме 1. Для них НОК - просто произведение:
3, 4: НОК(3, 4) = 12
3, 7: НОК(3, 7) = 21
3, 8: НОК(3, 8) = 24
4, 7: НОК(4, 7) = 28
4, 9: НОК(4, 9) = 36
6, 7: НОК(6, 7) = 42
7, 8: НОК(7, 8) = 56
7, 9: НОК(7, 9) = 63
8, 9: НОК(8, 9) = 72
2) Эти числа должны иметь вид x, n*x. Максимальное число, на которое делится каждое из них, равно x, а минимальное число, которое делится на каждое из них равно n*x.
3, 6: НОД(3, 6) = 3; НОК(3, 6) = 6
3, 9: НОД(3, 9) = 3; НОК(3, 9) = 9
4, 8: НОД(4, 8) = 4; НОК(4, 8) = 8
3) Сюда подойдут все пары, выписанные в пункте 2. Остальные пары:
4, 6: НОД(4, 6) = 2; НОК(4, 6) = 12
6, 8: НОД(6, 8) = 2; НОК(6, 8) = 24
6, 9: НОД(6, 9) = 3; НОК(6, 9) = 18
Пример вычисления для НОД и НОК пары 6 и 9:
Раскладываем на простые множители: 6 = 2 * 3, 9 = 3 * 3НОД - произведение всех простых множителей, входящих одновременно в оба разложения. НОД(6, 9) = 3НОК - произведение всех простых множителей, входящих хотя бы в одно разложение. НОК(6, 9) = 2 * 3 * 3 = 18.
Для упрощения жизни можно заметить, что для пары чисел x и y верно равенство: НОД(x, y) * НОК(x, y) = xy. Тогда, например, вычислив, что НОД(6, 9) = 3, сразу находим, что НОК(6, 9) = 6 * 9 / НОД(6, 9) = 54 / 3 = 18
Для того чтобы найти наибольший общий делитель необходимо разложить каждое из заданных чисел на простые множители. Потом выписать отдельно только те множители которые входят во все заданные числа. Потом перемножить между собой выписанные числа.
504 = 2³ · 3² · 7
756 = 2² · 3³ · 7
наибольший общий делитель(504;756) = 2² · 3² · 7 = 252
Чтобы найти наименьшее общее кратное заданных чисел,нужно выписать все простые множители, входящие хотя бы в одно из данных чисел,каждый из взятых множителей возвести в наибольшую из тех степеней, с которыми он входит в заданные числа и их перемножить.
504 = 2³ · 3² · 7
756 = 2² · 3³ · 7
Наименьшее общее кратное(504;756) = 2³ · 3³ · 7 = 1512
1) Взаимно простые числа - такие, что не имеют общих делителей, кроме 1. Для них НОК - просто произведение:
3, 4: НОК(3, 4) = 12
3, 7: НОК(3, 7) = 21
3, 8: НОК(3, 8) = 24
4, 7: НОК(4, 7) = 28
4, 9: НОК(4, 9) = 36
6, 7: НОК(6, 7) = 42
7, 8: НОК(7, 8) = 56
7, 9: НОК(7, 9) = 63
8, 9: НОК(8, 9) = 72
2) Эти числа должны иметь вид x, n*x. Максимальное число, на которое делится каждое из них, равно x, а минимальное число, которое делится на каждое из них равно n*x.
3, 6: НОД(3, 6) = 3; НОК(3, 6) = 6
3, 9: НОД(3, 9) = 3; НОК(3, 9) = 9
4, 8: НОД(4, 8) = 4; НОК(4, 8) = 8
3) Сюда подойдут все пары, выписанные в пункте 2. Остальные пары:
4, 6: НОД(4, 6) = 2; НОК(4, 6) = 12
6, 8: НОД(6, 8) = 2; НОК(6, 8) = 24
6, 9: НОД(6, 9) = 3; НОК(6, 9) = 18
Пример вычисления для НОД и НОК пары 6 и 9:
Раскладываем на простые множители: 6 = 2 * 3, 9 = 3 * 3НОД - произведение всех простых множителей, входящих одновременно в оба разложения. НОД(6, 9) = 3НОК - произведение всех простых множителей, входящих хотя бы в одно разложение. НОК(6, 9) = 2 * 3 * 3 = 18.Для упрощения жизни можно заметить, что для пары чисел x и y верно равенство: НОД(x, y) * НОК(x, y) = xy. Тогда, например, вычислив, что НОД(6, 9) = 3, сразу находим, что НОК(6, 9) = 6 * 9 / НОД(6, 9) = 54 / 3 = 18