Раскрытие скобок. Коэффициент. Подобные слагаемые. Приведение подобных слагаемых. Урок 4 На рисунке изображена одна из стен дома, ширина которой равна a метров, а высота – b метров. В стене прорезаны 2 окна шириной x м, высотой z м и дверь шириной x м, высотой y м. Напиши выражение для вычисления площади закрашенной части стены.
В принципе они всеядны. Даже кусочек вареной курочки или колбаски будут лопать "на ура". Лучше конечно, чтоб у них в рационе всё время были витамины, например : свежая морковь, яблоко, зеленый лук, петрушка, одуванчик (листья), подорожник. Так же кусочек банана. Зимой, когда нет травы пусть кушает герань (листик), она не ядовитая, мои джунгарики лопают за 4 щеки :) Если дадите кусочек сыра - тоже неплохо, хотя мои не очень любят. Кроме воды можете налить им молочка. Из зерновых обязательно - пшеница, кукуруза, подсолнечные семечки или тыквенные Не желательно давать растения, которые сами по себе ядовитые.
1) Если окружность проходит через точки А(2,0) ,В(5,0), то её центр лежит на прямой х = (2+5)/2 = 7/2 = 3,5. А так как окружность касается оси Оу, то радиус R равен 3,5. Координату уо центра по оси Оу определяем как высоту в равнобедренном треугольнике с боковыми сторонами R и основанием 5-2 = 3. уо = √(3,5²-1,5²) = √((3,5-1,5)(3,5+1,5) = √(2*5) = √10. Получаем уравнение окружности (х-3,5)²+(у-√10)² = 3,5².
2) Параболы у=-2х^2-х-6 и у=х^2-2 не пересекаются. Первая ветвями вниз имеет вершину в точке: Хо = -в/2а = 1/(-2*2) = -1/4, Уо = -2*1/16+(1/4)-6 = -5,875. Вторая ветвями вверх имеет вершину Уо = -2.
3) Решаем систему из двух уравнений подстановки: ух=2 , у = 2/х, х^2+(2/х)^2=4. x^4-4x^2+4 = 0 вводим замену переменной х² = а. а²-4а+4 = 0 или (а-2)² = 0. Отсюда имеем один корень: а = 2 Обратная замена даёт 2 точки пересечения: х = +-√2, у = +-2/√2 = +-√2. Координаты точек пересечения: (√2; √2) и (-√2; -√2).
Из зерновых обязательно - пшеница, кукуруза, подсолнечные семечки или тыквенные
Не желательно давать растения, которые сами по себе ядовитые.
А так как окружность касается оси Оу, то радиус R равен 3,5.
Координату уо центра по оси Оу определяем как высоту в равнобедренном треугольнике с боковыми сторонами R и основанием 5-2 = 3.
уо = √(3,5²-1,5²) = √((3,5-1,5)(3,5+1,5) = √(2*5) = √10.
Получаем уравнение окружности (х-3,5)²+(у-√10)² = 3,5².
2) Параболы у=-2х^2-х-6 и у=х^2-2 не пересекаются.
Первая ветвями вниз имеет вершину в точке:
Хо = -в/2а = 1/(-2*2) = -1/4, Уо = -2*1/16+(1/4)-6 = -5,875.
Вторая ветвями вверх имеет вершину Уо = -2.
3) Решаем систему из двух уравнений подстановки:
ух=2 , у = 2/х,
х^2+(2/х)^2=4.
x^4-4x^2+4 = 0 вводим замену переменной х² = а.
а²-4а+4 = 0 или (а-2)² = 0.
Отсюда имеем один корень: а = 2
Обратная замена даёт 2 точки пересечения: х = +-√2, у = +-2/√2 = +-√2.
Координаты точек пересечения: (√2; √2) и (-√2; -√2).