1. Прямая пропорциональность — это зависимость двух величин, при которой одна величина зависит от второй величины так, что их отношение остаётся неизменным
2. Обратной пропорциональной зависимостью называется такая зависимость величин, в которой с увеличением (уменьшением) одной величины в несколько раз, увеличивается(уменьшается) вторая величина во столько же раз.
3. Чтобы найти неизвестный крайний член пропорции, нужно произведение средних членов пропорции разделить на известный крайний член.
4. Средний член пропорции равен произведению крайних членов, делённому на другой средний член пропорции.
5. Пропорция верна, если произведение крайних членов равно произведению средних членов пропорции
Объяснение:
\begin{gathered}(x+2)^{10},\ \ \ n=3\\C_{10}^3x^32^{10-3}=\frac{10!}{(10-3)!*3!} x^32^7=\frac{7!*8*9*10}{7!*1*2*3}x^3*128=120x^3*128=15360x^3.\end{gathered}
(x+2)
10
, n=3
C
10
3
x
3
2
10−3
=
(10−3)!∗3!
10!
x
3
2
7
=
7!∗1∗2∗3
7!∗8∗9∗10
x
3
∗128=120x
3
∗128=15360x
3
.
ответ: 15360.
\begin{gathered}(1-2x)^7\ \ \ \ n=4\\(-2x+1)^7\ \ \ \ n=4\\C_7^4(-2x)^41^{7-4}=\frac{7!}{(7-4)!*4!} 16x^41=\frac{4!*5*6*7}{3!*4!} 16x^4=\frac{5*6*7}{1*2*3}16x^4=\\=5*7*16x^4=35*16x^4=560x^4 .\end{gathered}
(1−2x)
7
n=4
(−2x+1)
7
n=4
C
7
4
(−2x)
4
1
7−4
=
(7−4)!∗4!
7!
16x
4
1=
3!∗4!
4!∗5∗6∗7
16x
4
=
1∗2∗3
5∗6∗7
16x
4
=
=5∗7∗16x
4
=35∗16x
4
=560x
4
.
ответ: 560.
1. Прямая пропорциональность — это зависимость двух величин, при которой одна величина зависит от второй величины так, что их отношение остаётся неизменным
2. Обратной пропорциональной зависимостью называется такая зависимость величин, в которой с увеличением (уменьшением) одной величины в несколько раз, увеличивается(уменьшается) вторая величина во столько же раз.
3. Чтобы найти неизвестный крайний член пропорции, нужно произведение средних членов пропорции разделить на известный крайний член.
4. Средний член пропорции равен произведению крайних членов, делённому на другой средний член пропорции.
5. Пропорция верна, если произведение крайних членов равно произведению средних членов пропорции
Пошаговое объяснение: