В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История

Расшифруй запись **+***=, если известно, что оба слагаемых и сумма не изменятся, если прочитать их справа налево.

Показать ответ
Ответ:
ooz
ooz
19.03.2022 04:57

В решении.

Пошаговое объяснение:

Из пункта A по течению реки плыла лодка со скоростью 10 км/ч. Через 1,5 часа с этого же места против течения реки начал двигаться катер со скоростью 20 км/ч. Через 1 час 45 минут после отправления лодки расстояние между ними составило 27,3 км. Найди скорость течения реки.

Формула движения: S=v*t

S - расстояние            v - скорость             t – время

х - скорость течения реки.

(10+х) - скорость лодки по течению.

Время лодки в пути 1 час 45 минут, или 1,75 часа.

(10+х)*1,75 - расстояние лодки.

(20-х) - скорость катера против течения.

Время катера в пути 15 минут, или 0,25 часа.

(20-х)*0,25 - расстояние катера.

По условию задачи уравнение:

(10+х)*1,75 + (20-х)*0,25 = 27,3

Раскрыть скобки:

17,5 + 1,75х + 5 - 0,25х = 27,3

1,5х = 27,3 - 22,5

1,5х = 4,8

х = 4,8/1,5

х = 3,2 (км/час) - скорость течения реки.

Проверка:

(10 + 3,2) * 1,75 + (20 - 3,2) * 0,25 = 23,1 + 4,2 = 27,3 (км), верно.

0,0(0 оценок)
Ответ:
nikita1197
nikita1197
28.08.2020 18:03
ответ:функция не является непрерывной, в точках 1 и 2 она терпит разрывы второго родаПошаговое объяснение:Здесь единственные "плохие случаи" - это деление на 0. такое происходит при х = 2 или при х = 1f(x)=\dfrac{e^{\dfrac1{1-x}}}{x-2}1. Рассмотрим точку 1

1. Тут явно разрыв, так как функция не определена

2. Вычислим односторонние пределы

\displaystyle \lim_{x\to1-0}\dfrac{e^{\dfrac1{1-x}}}{x-2}=\lim_{x\to1-0}\dfrac1{x-2}\cdot\lim_{x\to1-0}e^{\dfrac1{1-x}}}=-\lim_{x\to1-0}e^{\dfrac1{1-x}}}=-\bigg(e^{\dfrac10}\bigg)=-\infty

\displaystyle \lim_{x\to1+0}\dfrac{e^{\dfrac1{1-x}}}{x-2}=\lim_{x\to1+0}\dfrac1{x-2}\cdot\lim_{x\to1+0}e^{\dfrac1{1-x}}}=1

То есть функция сначала ушла в -∞ а затем резко появилась в 1

это разрыв второго рода

2. Рассмотрим точку 2

1. Тут опять разрыв, смотрим какой

2. Вычислим односторонние пределы

\displaystyle \lim_{x\to2-0}\dfrac{e^{\dfrac1{1-x}}}{x-2}=\lim_{x\to2-0}\dfrac{1}{x-2}\lim_{x\to2-0}e^{\dfrac1{1-x}}=-\infty

\displaystyle \lim_{x\to2+0}\dfrac{e^{\dfrac1{1-x}}}{x-2}=\lim_{x\to2+0}\dfrac{1}{x-2}\lim_{x\to2+0}e^{\dfrac1{1-x}}=+\infty

То есть функция сначала уходит в -∞ а потом выходит из +∞

В этой точке тоже разрыв второго рода

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота