Расстояние между городом и санаторием 1836км.Из города в санаторий выехал автомобиль со скоростью 96км/ч.Через сколько автомобиль будет на расстоянии 204 км от санатория?
5) Уравнение прямой А4М, перпендикулярной к плоскости А1А2А3, - это высота из точки А4 на основание пирамиды.
Прямая, проходящая через точку M₀(x₀;y₀;z₀) и перпендикулярная плоскости Ax + By + Cz + D = 0 имеет направляющий вектор (A;B;C).
Уравнение плоскости A1A2A3: - 5y - 4z + 48 = 0.
Уравнение А4М:
6) Уравнение плоскости, проходящей через точку перпендикулярно вектору A1A2.
Уравнение плоскости, проходящей через точку M₀(x₀, y₀, z₀) перпендикулярно вектору N = (l,m,n), имеет вид:
l(x- x₀) + m(y- y₀) + n(z- z₀) = 0
Координаты точки A4(7;3;7)
Координаты вектора A1A2(-1;-4;5)
-1(x - 7) + (-4)(y - 3) + 5(z - 7) = 0
Искомое уравнение плоскости:
-x - 4y + 5z-16 = 0.
7) Уравнение прямой А3N, параллельной прямой А1А2.
Необходимая для решения точка А3(2; 4; 7) задана по условию, а направляющий вектор для искомой прямой возьмём тот же, что для прямой А1А2, так как они параллельны: n=(-1;-4;5).
Пошаговое объяснение:
1.
1) 2 5/9 - 1 20/21 = 2 35/63 - 1 60/63 = 1 98/63 - 1 60/63 = 38/63
2) 38/63 : 1 8/49 = 38/63 : 57/49 = 38/63 * 49/57 =
2/9 * 7/3 = 14/27
3) 1 8/9 : 6 = 17/9 * 1/6 = 17/54
4) 14/27 + 17/54 = 28/54 + 17/54 = 45/54 = 5/6
2.
1) 1 17/18 * 1 13/14 = 35/18 * 27/14 = 5/2 * 3/2 = 15/4
2) 2 5/8 : 1 19/20 = 21/8 : 39/20 = 21/8 * 20/39 = 7/2 * 5/13 = 35/26
3) 15/4 - 35/26 = 195/52 - 70/52 = 125/52
4) 2 25/78 - 1 1/26 = 2 25/78 - 1 3/78 = 1 22/78 = 1 11/39
5) 125/52 : 1 11/39 = 125/52 : 50/39 = 125/52 * 39/50 = 5/4 * 3/2 = 15/8 = 1 7/8
Даны координаты пирамиды: A1(6,8,2), A2(5,4,7), A3(2,4,7), A4(7,3,7).
1) Координаты векторов.
Координаты векторов находим по формуле:
X = xj - xi; Y = yj - yi; Z = zj - zi
здесь X,Y,Z координаты вектора; xi, yi, zi - координаты точки Аi; xj, yj, zj - координаты точки Аj;
Например, для вектора A1A2
X = x2 - x1; Y = y2 - y1; Z = z2 - z1
X = 5-6; Y = 4-8; Z = 7-2
A1A2(-1;-4;5)
A1A3(-4;-4;5)
A1A4(1;-5;5)
A2A3(-3;0;0)
A2A4(2;-1;0)
A3A4(5;-1;0)
2) Модули векторов (длина ребер пирамиды)
Длина вектора a(X;Y;Z) выражается через его координаты формулой:
a = √(X² + Y² + Z²).
Нахождение длин ребер и координат векторов.
Вектор А1A2={xB-xA, yB-yA, zB-zA} -1 -4 5 L = 6,480740698.
Вектор A2A3={xC-xB, yC-yB, zC-zB} -3 0 0 L =3.
Вектор А1A3={xC-xA, yC-yA, zC-zA} -4 -4 5 L = 7,549834435.
Вектор А1A4={xD-xA, yD-yA, zD-zA} 1 -5 5 L =7,141428429.
Вектор A2A4={xD-xB, yD-yB, zD-zB} 2 -1 0 L = 2,236067977.
Вектор A3A4={xD-xC, yD-yC, zD-zC} 5 -1 0 L = 5,099019514.
3) Уравнение прямой
Прямая, проходящая через точки A1(x1; y1; z1) и A2(x2; y2; z2), представляется уравнениями:
Параметрическое уравнение прямой:
x=x₀+lt
y=y₀+mt
z=z₀+nt
Уравнение прямой A1A2(-1,-4,5)
Параметрическое уравнение прямой:
x=6-t
y=8-4t
z=2+5t.
4) Уравнение плоскости А1А2А3.
x-6 y-8 z-2
-1 -4 5
-4 -4 5 = 0
(x-6)((-4)*5-(-4)*5) - (y-8)((-1)*5-(-4)*5) + (z-2)((-1)*(-4)-(-4)*(-4)) =
= - 15y - 12z + 144 = 0
Упростим выражение: - 5y - 4z + 48 = 0.
5) Уравнение прямой А4М, перпендикулярной к плоскости А1А2А3, - это высота из точки А4 на основание пирамиды.
Прямая, проходящая через точку M₀(x₀;y₀;z₀) и перпендикулярная плоскости Ax + By + Cz + D = 0 имеет направляющий вектор (A;B;C).
Уравнение плоскости A1A2A3: - 5y - 4z + 48 = 0.
Уравнение А4М:
6) Уравнение плоскости, проходящей через точку перпендикулярно вектору A1A2.
Уравнение плоскости, проходящей через точку M₀(x₀, y₀, z₀) перпендикулярно вектору N = (l,m,n), имеет вид:
l(x- x₀) + m(y- y₀) + n(z- z₀) = 0
Координаты точки A4(7;3;7)
Координаты вектора A1A2(-1;-4;5)
-1(x - 7) + (-4)(y - 3) + 5(z - 7) = 0
Искомое уравнение плоскости:
-x - 4y + 5z-16 = 0.
7) Уравнение прямой А3N, параллельной прямой А1А2.
Необходимая для решения точка А3(2; 4; 7) задана по условию, а направляющий вектор для искомой прямой возьмём тот же, что для прямой А1А2, так как они параллельны: n=(-1;-4;5).
Пошаговое объяснение: