Расстояние между шкалой магазином на карте изображена отрезком 2,8 см масштаб карты 1: 70000а для нахождения расстояния на местности между школой и магазином а)Составь пропорцию d)Найдите Расстояние на местности между скалой и магазином
Любую квадратичную функцию у = ax2 + bx + c с выделения полного квадрата можно записать в виде
y
=
a
(
x
+
b
2
a
)
2
−
b
2
−
4
a
c
4
a
,
т.е. в виде
y
=
a
(
x
−
x
0
)
2
+
y
0
, где
x
0
=
−
b
2
a
,
y
0
=
−
b
2
−
4
a
c
4
a
Теорема
Графиком функции
y
=
a
(
x
−
x
0
)
2
+
y
0
является парабола, получаемая сдвигом параболы
y
=
a
x
2
:
вдоль оси абсцисс вправо на x0, если х0 > 0, влево на |х0|, если х0 < 0;
вдоль оси ординат вверх на y0, если y0 > 0, вниз на |y0|, если y0<0.
Таким образом, графиком функции у = ax2 + bx + c является парабола, получаемая сдвигом параболы у = ax2 вдоль координатных осей. Равенство у = ax2 + bx + c называют уравнением параболы.
Координаты (x0; y0) вершины параболы у = ax2 + bx + c можно найти по формулам
x
0
=
−
b
2
a
,
y
0
=
a
x
2
0
+
b
x
0
+
c
Ось симметрии параболы у = ax2 + bx + c - прямая, параллельная оси ординат и проходящая через вершину параболы. Ветви параболы у = ax2 + bx + c направлены вверх, если a>0, и направлены вниз, если a<0.
Обозначим товары их начальными буквами: Х, Т, М.
3 человека купили Х+Т+М.
Они входят в число покупателей, купивших по две вещи, значит:
Т+Х купили 15-3=12 человек.
Т+М купили 19-3=16 человек.
М+Х купили 20-3=17 человек.
Всего этими покупателями куплено:
Телевизоров 12+3+16=31 (т)
Оставшиеся 37-31=6 телевизоров купили 6 человек.
Холодильников куплено теми, кто купил больше одного товара,
35-(12+3+17)=32 (х)
Оставшиеся купили 35-32=3 человека.
Все проданные микроволновки куплены покупателями, купившими по 2 или 3 товара.
Следовательно, покупателей было (12+3+17+16) =48 купивших более 1 вещи
и 6+3=9 (чел) купили по одному виду товаров.
Всего 48+9=57 человек.
Из вошедших в магазин 65-57=8 челове ушли без покупок.
Пошаговое объяснение:
Вот незнаю правильно
Немного теории.
Построение графика квадратичной функции
Теорема
Любую квадратичную функцию у = ax2 + bx + c с выделения полного квадрата можно записать в виде
y
=
a
(
x
+
b
2
a
)
2
−
b
2
−
4
a
c
4
a
,
т.е. в виде
y
=
a
(
x
−
x
0
)
2
+
y
0
, где
x
0
=
−
b
2
a
,
y
0
=
−
b
2
−
4
a
c
4
a
Теорема
Графиком функции
y
=
a
(
x
−
x
0
)
2
+
y
0
является парабола, получаемая сдвигом параболы
y
=
a
x
2
:
вдоль оси абсцисс вправо на x0, если х0 > 0, влево на |х0|, если х0 < 0;
вдоль оси ординат вверх на y0, если y0 > 0, вниз на |y0|, если y0<0.
Таким образом, графиком функции у = ax2 + bx + c является парабола, получаемая сдвигом параболы у = ax2 вдоль координатных осей. Равенство у = ax2 + bx + c называют уравнением параболы.
Координаты (x0; y0) вершины параболы у = ax2 + bx + c можно найти по формулам
x
0
=
−
b
2
a
,
y
0
=
a
x
2
0
+
b
x
0
+
c
Ось симметрии параболы у = ax2 + bx + c - прямая, параллельная оси ординат и проходящая через вершину параболы. Ветви параболы у = ax2 + bx + c направлены вверх, если a>0, и направлены вниз, если a<0.