Расстояние в км мотоциклист проехал на 1 час быстрее велосипедиста. Какова скорость велосипедиста, если его скорость на 2 км/ч меньше, чем мотоциклиста?
Изучая математику,мы проходим отношения чисел и величин.Одно число может быть меньше или больше другого,но для сравнения этого бывает недостаточно.Для решения практических задач нам необходимо знать,во сколько раз или на сколько одно число больше или меньше другого.
На сколько единиц одно число больше или меньше другого -это разностное сравнение.Для разносного сравнения необходимо из большего числа вычесть меньшее.
Во сколько раз одно число больше или меньше другого -это кратное сравнение.Для кратного сравнения необходимо большее число разделить на меньшее.
Пример:
На сколько 6-ть больше 3-х?Вычисляем: 6-3=3 ,получается 6-ть больше 3-х на 3 единицы.Это разностное сравнение.
Во сколько раз 6-ть больше 3-х?Вычисляем: 6:3=2 ,получается 6-ть больше 3-х в два раза.Это кратное сравнение .
Изучая математику,мы проходим отношения чисел и величин.Одно число может быть меньше или больше другого,но для сравнения этого бывает недостаточно.Для решения практических задач нам необходимо знать,во сколько раз или на сколько одно число больше или меньше другого.
На сколько единиц одно число больше или меньше другого -это разностное сравнение.Для разносного сравнения необходимо из большего числа вычесть меньшее.
Во сколько раз одно число больше или меньше другого -это кратное сравнение.Для кратного сравнения необходимо большее число разделить на меньшее.
Пример:
На сколько 6-ть больше 3-х?Вычисляем: 6-3=3 ,получается 6-ть больше 3-х на 3 единицы.Это разностное сравнение.
Во сколько раз 6-ть больше 3-х?Вычисляем: 6:3=2 ,получается 6-ть больше 3-х в два раза.Это кратное сравнение .
Пошаговое объяснение:
Ход решения задачи.
1.
Провести через вершину меншего основания прямую, паралельную боковой стороне трапеции.
Получим на основании 2 отрезка, один из которых равен 2, другой - 1см( равный меньшему основанию)
2.
Обозначить отрезок между основанием высоты и большим углом у основания х
Составить 2 выражения для нахождения высоты трапеции (из того же угла), для чего опустить эту высоту на большее основание и приравнять их.
Получим
h²=()²-х²
h²=4² - (2-х)²
(2√3)²-х²=4² - (2-х)²
Решив это уравнение. найдем, что х=0.
Отсюда эта трапеция - прямоугольная, и углы при меньшей боковой стороне - прямые.
h=2√3
Косинус нужного угла =2:4=0,5
Найдите угол по таблице косинусов.
Этот угол равен 60º.