Раздел «Натуральные числа и нуль» Приведите пример множеств, соответствующих сумме 5 + 4. Можно ли в качестве примера взять следующие множества A = {1, 2, 4, 5,7} и В = {1, 2, 4, 9}.
Пусть скорость автобуса – х км/ч, тогда скорость автомобиля – (х + 36) км/ч. За 1,3 часа автомобиль проехал (х + 36) • 1,3 км, а автобус за 2,2 часа преодолел (х • 2,2) км. Эти расстояния равны, поскольку это расстояние между пунктами А и В. Зная это, составим уравнение:
(х + 36) • 1,3 = х • 2,2;
х • 1,3 + 46,8 = х • 2,2;
х • 1,3 - х • 2,2 = - 46,8;
- х • 0,9 = - 46,8;
х • 0,9 = 46,8;
х = 46,8 : 0,9;
х = 52 (км/ч) – скорость автобуса;
х + 36 = 52 + 36 = 88 (км/ч) – скорость автомобиля.
ответ: скорость автобуса – 52 км/ч, а скорость автомобиля – 88 км/ч.
Чтобы решить эту задачу надо сложить равенства из условия задачи. Получится
sinA+sinB+cosA+cosB=2
sinA+cosA+sinB+cosB=2
Вспомним область значения функции y=sin x. Это E(y)=[-1,1]. Если синус равен 0, то косинус равен 1. Но синус угла четырехугольника всегда больше 0. Если синус равен 1 то косинус равен 0, и сумма синуса и косинуса равна 1. Либо они оба меньше 1. Следовательно sinA+cosA не превосходит 1. Аналогично sinB+cosB не превосходит 1. Следовательно sinA+cosA+sinB+cosB не превосходит 2. Но мы доказали что оно равно 2 поэтому sinA должен быть равен 1 и sinB должен быть равен 1. Этот четырехугольник ABCD - на самом деле прямоугольная трапеция!
Вычислим теперь угол D. Применим свойство трапеции: сумма внутренних односторонних углов при боковой стороне равна 180 градусов. Следовательно
Пусть скорость автобуса – х км/ч, тогда скорость автомобиля – (х + 36) км/ч. За 1,3 часа автомобиль проехал (х + 36) • 1,3 км, а автобус за 2,2 часа преодолел (х • 2,2) км. Эти расстояния равны, поскольку это расстояние между пунктами А и В. Зная это, составим уравнение:
(х + 36) • 1,3 = х • 2,2;
х • 1,3 + 46,8 = х • 2,2;
х • 1,3 - х • 2,2 = - 46,8;
- х • 0,9 = - 46,8;
х • 0,9 = 46,8;
х = 46,8 : 0,9;
х = 52 (км/ч) – скорость автобуса;
х + 36 = 52 + 36 = 88 (км/ч) – скорость автомобиля.
ответ: скорость автобуса – 52 км/ч, а скорость автомобиля – 88 км/ч.
Пошаговое объяснение:
126
Пошаговое объяснение:
Чтобы решить эту задачу надо сложить равенства из условия задачи. Получится
sinA+sinB+cosA+cosB=2
sinA+cosA+sinB+cosB=2
Вспомним область значения функции y=sin x. Это E(y)=[-1,1]. Если синус равен 0, то косинус равен 1. Но синус угла четырехугольника всегда больше 0. Если синус равен 1 то косинус равен 0, и сумма синуса и косинуса равна 1. Либо они оба меньше 1. Следовательно sinA+cosA не превосходит 1. Аналогично sinB+cosB не превосходит 1. Следовательно sinA+cosA+sinB+cosB не превосходит 2. Но мы доказали что оно равно 2 поэтому sinA должен быть равен 1 и sinB должен быть равен 1. Этот четырехугольник ABCD - на самом деле прямоугольная трапеция!
Вычислим теперь угол D. Применим свойство трапеции: сумма внутренних односторонних углов при боковой стороне равна 180 градусов. Следовательно
C+D=180
54+D=180
D=180-54
D=126