Моя будущая квартира будет находиться в комфортабельном многоэтажном доме. Она будет расположена на 20м этаже. Из окон моей квартиры будет виден весь красивый город. Квартира будет большой и уютной. в ней будет холл, гардеробная комната (!), гостинная, 2 спальни, детская, кухня, туалет и ванная, балкон. Стиль моей квартиры будет современный с модными элементами. В гостинной будет 2 дивана, журнальный столик, небольшая библиотека, большой телевизор в центре, разные картины и фотографии на стенах. На полу будет паркет, без ковра. На больших окнах светлые, лёгкие шторы. В 1 спальне будет большая кровать, 2 журнальных столика и светильники на них. В ней будет зеркальный потолок, на окнах плотные шторы из дорогой ткани. В другой спальне будет диван, стол, компьютер а так же небольшой стол-комод для косметики.Детская комната будет светлой и милой. Цвет стен – жёлтый или розовый. В ней будет маленькая кроватка и всё необходимое для малыша. Кухня будет объединена с гостинной. Она будет обородувана всеми современными технологиями. Там так же будет большой обеденный стол и стулья
Отрезок AB – диаметр окружности с центром в точке О, длина её радиуса R = 5 см. Точка D лежит на окружности и угол AOD = 120°. Рассмотрим равнобедренный треугольник АОD (АО = ОD = R), в нём ∠ ОАD = ∠ ОDА по свойству углов при основании в равнобедренном треугольнике. Так как сумма углов в треугольнике равна 180°, то ∠ AOD + ∠ ОАD + ∠ ОDА = 180°; 120° + ∠ ОАD + ∠ ОАD = 180°; ∠ ОАD = 30°. Рассмотрим прямоугольный треугольник АВD, в нём ∠ АDВ = 90° по свойству вписанного угла, опирающегося на диаметр. Катет DВ лежит напротив угла ∠ ОАD = 30°, значит, DВ = АВ : 2; DВ = 5 см. ∠ АВD = 60° Чтобы найти площадь треугольника ADB, найдём его второй катет по теореме Пифагора: АВ² = АD² + ВD²; 10² = АD² + 5²; АD² = 10² – 5²; АD² = 75; АD = 5 ∙ (3^(½)). Площадь треугольника S(ADB) = (AD ∙ DB) : 2; S(ADB) = (5 ∙ (3^(½)) ∙ 5) : 2; S(ADB) = 12,5 ∙ (3^(½)); S(ADB) ≈ 21,65 см². Опустим из точки D перпендикуляр DС к прямой АВ и найдём расстояние от точки D до прямой AB из треугольника СВD: СD = ВD ∙ sin 60°; СD = 5 ∙ (3^(½)) : 2 = 2,5 ∙ (3^(½)) ≈ 4,33 (см) ответ: S(ADB) ≈ 21,65 см²; СD ≈ 4,33 см.