Размер (высота) типографического шрифта измеряется в пунктах. Один пункт равен 1/72 дюйма, то есть 0,3528мм. Какой высоты нужен шрифт (в пунктах), чтобы текст был расположен на листе формата А5 так же, как этот же текст, напечатанный шрифтом высотой 16 пунктов на листе формата А4? Размер шрифта округляется до целого.
Примем скорость грузовика за 1
Тогда скорость мотоцикла 1+10%=1+0.1*1=1.1
автомобиль еще на 50% быстрее 1.1+0.5*1.1=1.55
значит автомобиль быстрее грузовика на (1.55-1=0.55) 55%
Но нам надо узнать наоборот - на сколько грузовик медленней автомобиля. для этого составим пропорцию
1.55 - 100%
1 - x%
x=100%/1.55=64.52 кругленно
ответ: грузовик медленнее автомобиля на 100%-64.52%=35.48%
1) Уравнение стороны АВ:
, после сокращения на 10 получаем каноническое уравнение:
В общем виде х-у-3 = 0.
В виде уравнения с коэффициентом у = х-3.
2) уравнение высоты Ch.
(Х-Хс)/(Ув-Уа) = (У-Ус)/(Ха-Хв).
Подставив координаты вершин, получаем:
х + у + 1 = 0, или
у = -х - 1.
3) уравнение медианы am.
(Х-Ха)/(Ха1-Ха ) = (У-Уа)/(Уа1-Уа).
Основание медианы Am (Ха1;Уа1)= ((Хв+Хс)/2; (Ув+Ус)/2) =
= ((9-5)/2=2; (6+4)/2=5) = (2;5).
Получаем уравнение Am:
Можно сократить на 3:
y = 3x - 1.
4) Точка n пересечения медианы Аm и высоты Ch.
Приравниваем y = 3x - 1 и у = -х - 1.
4х = 0,
х = 0, у = -1.
5) уравнение прямой, проходящей через вершину C параллельно стороне AB.
(Х-Хс)/( Хв-Ха) = (У-Ус)/(Ув-Уа).
х - у + 9 = 0,
у = х + 9.
6) расстояние от точки С до прямой АВ.
Это высота на сторону АВ.
h = 2S/AB.
Находим стороны треугольника:
АВ = √((Хв-Ха)²+(Ув-Уа)²) = √200 ≈ 14.14213562,
BC = √((Хc-Хв)²+(Ус-Ув)²) = √200 ≈ 14.14213562,
AC = √((Хc-Хa)²+(Ус-Уa)²) = √80 ≈ 8.94427191.
Площадь находим по формуле Герона:
S = 60.
h = 2*60/√200 = 8.485281.