Ребра прямоугольного параллелепипеда равны 2; 3 и b см. Найдите: а) расстояние от В1 до плоскости С1С; б) расстояние между В1С1 и 1; в) угол между прямой В1 и плоскостью основания ABCD.
ответ: 1) dz=e^(x/y)*dx/y-x*e^(x/y)*dy/y²; 2) функция имеет максимум в точке M(2/3; 1/3).
Пошаговое объяснение:
1) z=e^(x/y)
Находим частные производные:
dz/dx=1/y*e^(x/y), dz/dy=-x/y²*e^(x/y).
Полный дифференциал dz=dz/dx*dx+dz/dy*dy=e^(x/y)*dx/y-x*e^(x/y)*dy/y²
2) Находим первые частные производные:
dz/dx=2*y+2*x-2; dz/dy=2*x+8*y-4.
Приравнивая их к нулю, получаем систему уравнений:
x+y-1=0
x+4*y-2=0
Решая её, находим x=2/3, y=1/3 - координаты единственной критической точки М(2/3; 1/3).
Находим вторые частные производные:
d²z/dx²=2; d²z/dxdy=2; d²z/dy²=8. Так как они суть постоянные числа, то и в критической точке они будут иметь те же значения:
A=d²z/dx²(M)=2; B=d²z/dxdy(M)=2; C=d²z/dy²(M)=8.
Так как выражение A*C-B²=2*8-4=12>0, то есть положительно, то в точке М функция действительно имеет экстремум. А так как при этом A=2>0, то этот экстремум является максимумом.
Достаточное условие экстремума. Найдем вторые производные. A = d2z/dx^2 = 6 > 0; B = d2z/dxdy = -1; C = d2z/dy^2 = 4 D = A*C - B^2 = 6 * 4 - (-1) = 25 > 0 Так как D > 0 и A > 0 - это точка минимума. Если бы было D > 0 и A < 0 - это была бы точка максимума. Если бы было D < 0 - это вообще не был бы экстремум.
ответ: 1) dz=e^(x/y)*dx/y-x*e^(x/y)*dy/y²; 2) функция имеет максимум в точке M(2/3; 1/3).
Пошаговое объяснение:
1) z=e^(x/y)
Находим частные производные:
dz/dx=1/y*e^(x/y), dz/dy=-x/y²*e^(x/y).
Полный дифференциал dz=dz/dx*dx+dz/dy*dy=e^(x/y)*dx/y-x*e^(x/y)*dy/y²
2) Находим первые частные производные:
dz/dx=2*y+2*x-2; dz/dy=2*x+8*y-4.
Приравнивая их к нулю, получаем систему уравнений:
x+y-1=0
x+4*y-2=0
Решая её, находим x=2/3, y=1/3 - координаты единственной критической точки М(2/3; 1/3).
Находим вторые частные производные:
d²z/dx²=2; d²z/dxdy=2; d²z/dy²=8. Так как они суть постоянные числа, то и в критической точке они будут иметь те же значения:
A=d²z/dx²(M)=2; B=d²z/dxdy(M)=2; C=d²z/dy²(M)=8.
Так как выражение A*C-B²=2*8-4=12>0, то есть положительно, то в точке М функция действительно имеет экстремум. А так как при этом A=2>0, то этот экстремум является максимумом.
Необходимое условие экстремума: производные обе равны 0
{ dz/dx = 6x - y - 5 = 0
{ dz/dy = 4y - x - 3 = 0
Умножаем 1 уравнение на 4
{ 24x - 4y - 20 = 0
{ -x + 4y - 3 = 0
Складываем уравнения
23x + 0y - 23 = 0
x = 1
y = 6x - 5 = 6 - 5 = 1
z(1, 1) = 3*1 - 1*1 + 2*1 - 5 - 3 + 4 = 0
Достаточное условие экстремума. Найдем вторые производные.
A = d2z/dx^2 = 6 > 0; B = d2z/dxdy = -1; C = d2z/dy^2 = 4
D = A*C - B^2 = 6 * 4 - (-1) = 25 > 0
Так как D > 0 и A > 0 - это точка минимума.
Если бы было D > 0 и A < 0 - это была бы точка максимума.
Если бы было D < 0 - это вообще не был бы экстремум.
ответ: M0(1; 1; 0) - точка минимума.