Причины возникновения Пристрастие распространяется среди всех слоев населения, вне зависимости от социального положения и возраста. Подростковая зависимость В эту группу входят пациенты отроческого, юношеского и начального взрослого возраста. Возрастные рамки от 14 до 24 лет. Это студенты, школьники, молодые люди службу в армии. Причины подростк: Не к адаптации к изменившимся условиям окружающего мира. Незавершенность разрыва между матерью и ребёнком. Несостоявшаяся индивидуализация. Поиск путей освобождения от физического и эмоционального благополучия. Скука, разочарование, тревога, одиночество, депрессия. Мотив эйфории, замаскированный социальным протестом, модой. Низкая информированность о вреде наркотиков. Любопытство.
1. Нет, не получится. Представим, будто мы обкладываем поле доминошками. Каждая доминошка покрывает одно черное и одно белое поле, а при выкидывании полей a1 и h8 черных полей оказывается на 2 меньше, чем белых.
2. Решение Пусть искомое число abcd. Для каждой цифры a,b,c,d посчитаем, сколько раз она встречается в данных четырех числах. Очевидно, что сумма этих вхождений должна равняться 8. Поскольку никакая цифра не встречается в 3 числах, то каждая цифра встречается ровно дважды. Т.е. в искомом числе могут быть только цифры 0,1,3,4,6,7. Но в первом числе из этих цифр есть только 6 и 0. Значит, эти цифры в числе точно есть. Аналогично из третьего числа, получаем цифры 4 и 3. Составим табличку, в которой плюсики стоят в тех разрядах, в которых они могут быть написаны.
0 + − + −
3 − + − +
4 + − + −
6 + − − +
Т.к. в разряде сотен есть только один « + », то в разряде сотен числа стоит тройка. Действуя так далее и воспользовавшись тем, что четырехзначное число с нуля не начинается, получим число 4306, которое, очевидно, подходит. ответ 4306.
1. Нет, не получится. Представим, будто мы обкладываем поле доминошками. Каждая доминошка покрывает одно черное и одно белое поле, а при выкидывании полей a1 и h8 черных полей оказывается на 2 меньше, чем белых.
2. Решение Пусть искомое число abcd. Для каждой цифры a,b,c,d посчитаем, сколько раз она встречается в данных четырех числах. Очевидно, что сумма этих вхождений должна равняться 8. Поскольку никакая цифра не встречается в 3 числах, то каждая цифра встречается ровно дважды. Т.е. в искомом числе могут быть только цифры 0,1,3,4,6,7. Но в первом числе из этих цифр есть только 6 и 0. Значит, эти цифры в числе точно есть. Аналогично из третьего числа, получаем цифры 4 и 3. Составим табличку, в которой плюсики стоят в тех разрядах, в которых они могут быть написаны.
0 + − + −
3 − + − +
4 + − + −
6 + − − +
Т.к. в разряде сотен есть только один « + », то в разряде сотен числа стоит тройка. Действуя так далее и воспользовавшись тем, что четырехзначное число с нуля не начинается, получим число 4306, которое, очевидно, подходит. ответ 4306.
3. решение в файле