Три числа,сумма которых равна 33: x+y+z=33 образуют арифметическую прогрессию: x-y=y-z, то есть x+z=2y Тогда, x+y+z=y+2y=3y=33, y=11 Если первое число оставить без изменения,второе число уменьшить на 3,а третье - на 2,то получится геометрическая прогрессия:
x·(z-2)=64, но x+z=22 и z=22-x x·(22-x-2)=64 x²-20x+64=0 Решаем квадратное уравнение: D=b²-4ac=20²-4·1·64=400-256=144
Уравнение имеет два корня: , и тогда искомые числа: 4,11,18 , и тогда искомые числа: 16,11,6 Поскольку, по условиям задачи, числа образуют убывающую арифметическую прогрессию, ответом является второй вариант.
Сначала определим, при каких m корни будут действительными. Для этого ищем дискриминант и ставим условие, что он неотрицателен. D=(m-1)²-4m²=-3m²-2m+1=-(3m-1)(m+1)>=0 Отсюда m∈[-1;1/3] Далее выразим сумму квадратов корней уравнения, используя теорему Виета. x1+x2=1-m, x1*x2=m², x1²+x2²=(x1+x2)²-2*x1*x2=(1-m)²-2m²=-m²-2m+1=f(m) Рассмотрим функцию f(m): f'(m)=-2m-2. Имеет один нуль производной в точке m=-1. При m∈(-∞;-1) производная положительная, следовательно, функция возрастает. При m∈(-1;+∞) производная отрицательная, следовательно, функция убывает. По условию, надо найти наименьшее значение функции. С учетом поставленных ограничений на действительность корней, ищем минимум функции на отрезке m∈[-1;1/3]. Он достигается в точке m=1/3. f(1/3)=-(1/3)²-2*(1/3)+1=2/9.
образуют арифметическую прогрессию: x-y=y-z, то есть x+z=2y
Тогда, x+y+z=y+2y=3y=33, y=11
Если первое число оставить без изменения,второе число уменьшить на 3,а третье - на 2,то получится геометрическая прогрессия:
x·(z-2)=64, но x+z=22 и z=22-x
x·(22-x-2)=64
x²-20x+64=0
Решаем квадратное уравнение: D=b²-4ac=20²-4·1·64=400-256=144
Уравнение имеет два корня:
, и тогда искомые числа: 4,11,18
, и тогда искомые числа: 16,11,6
Поскольку, по условиям задачи, числа образуют убывающую арифметическую прогрессию, ответом является второй вариант.
D=(m-1)²-4m²=-3m²-2m+1=-(3m-1)(m+1)>=0
Отсюда m∈[-1;1/3]
Далее выразим сумму квадратов корней уравнения, используя теорему Виета.
x1+x2=1-m,
x1*x2=m²,
x1²+x2²=(x1+x2)²-2*x1*x2=(1-m)²-2m²=-m²-2m+1=f(m)
Рассмотрим функцию f(m):
f'(m)=-2m-2.
Имеет один нуль производной в точке m=-1.
При m∈(-∞;-1) производная положительная, следовательно, функция возрастает.
При m∈(-1;+∞) производная отрицательная, следовательно, функция убывает.
По условию, надо найти наименьшее значение функции. С учетом поставленных ограничений на действительность корней, ищем минимум функции на отрезке m∈[-1;1/3]. Он достигается в точке m=1/3.
f(1/3)=-(1/3)²-2*(1/3)+1=2/9.