1. есть 2 способа найти нод(наибольший общий делитель - число, на которое x и у делятся без остатка). первый способ - подбирать. он подходит, если числа небольшие. нпр. 12 и 9. 12: 1 =12, 12: 2=6, 12: 3=4, 12: 4=3, 12: 6=2, 12: 12=1 и так же с 9. 9: 1=9, 9: 3=3, 9: 9=1. наибольшее 1. просто делишь, потом полученное опять делишь и так, пока не останется один. потом из левого столбика вычеркиеваешь 7(она есть только у одного числа, но нет у другого) и оставшиеся две двойки умножаешь. 2×2=4 (нод)
2. наименьшее общее кратное (нок) это число которое делится и на х и на на у без остатка. опять же есть 2 способа: первый - умножить каждое число на 1, на 2, на 3 и тд как в таблице умножения. нпр возьмем 3 и 4: 3×1=3, 4×1=4, 3×2=6, 4×2=8, 3×3=9, 4×3=12, 3×4=12 их нок - 12. (да, можно было бы просто их помножить, но это не всегда будет наименьшее кратное (нпр 3 и 9 их нок - 9, а не 27) ) второй способ - разложить на множители. см картинку 2. во втором разложении есть две двойки, которых нет в первом, так что добвляем их туда. 3×3×2×2=36 это их нок.
1) p1=0,6; p2=0,7. Вероятность промаха обоих (1-p1)*(1-p2). Вероятность попадания хотя бы одного 1-(1-p1)(1-p2)=1-0,4*0,3=0,88 2) найдем вероятность того что все 10 деталей годные. Благоприятных исходов "цэ из 90 по 10" - число сочетаний (буду писать С_90_10). Всего исходов С_100_10. Тогда искомая вероятность С_90_10/С_100_10. Вероятность что есть дефектная из 10: 1-С_90_10/С_100_10=1-(81*82*...*90)/(91*92*...*100) 3) p1=0,6; p2=0,7. Два варианта: 1 попал 2 мимо или наоборот. Получим p1*(1-p2)+p2(1-p1)=0,6*0,3+0,4*0,7=0,46
ответ:
ответил только на 1 и 3
1. есть 2 способа найти нод(наибольший общий делитель - число, на которое x и у делятся без остатка). первый способ - подбирать. он подходит, если числа небольшие. нпр. 12 и 9. 12: 1 =12, 12: 2=6, 12: 3=4, 12: 4=3, 12: 6=2, 12: 12=1 и так же с 9. 9: 1=9, 9: 3=3, 9: 9=1. наибольшее 1. просто делишь, потом полученное опять делишь и так, пока не останется один. потом из левого столбика вычеркиеваешь 7(она есть только у одного числа, но нет у другого) и оставшиеся две двойки умножаешь. 2×2=4 (нод)
2. наименьшее общее кратное (нок) это число которое делится и на х и на на у без остатка. опять же есть 2 способа: первый - умножить каждое число на 1, на 2, на 3 и тд как в таблице умножения. нпр возьмем 3 и 4: 3×1=3, 4×1=4, 3×2=6, 4×2=8, 3×3=9, 4×3=12, 3×4=12 их нок - 12. (да, можно было бы просто их помножить, но это не всегда будет наименьшее кратное (нпр 3 и 9 их нок - 9, а не 27) ) второй способ - разложить на множители. см картинку 2. во втором разложении есть две двойки, которых нет в первом, так что добвляем их туда. 3×3×2×2=36 это их нок.
2) найдем вероятность того что все 10 деталей годные. Благоприятных исходов "цэ из 90 по 10" - число сочетаний (буду писать С_90_10). Всего исходов С_100_10. Тогда искомая вероятность С_90_10/С_100_10.
Вероятность что есть дефектная из 10:
1-С_90_10/С_100_10=1-(81*82*...*90)/(91*92*...*100)
3) p1=0,6; p2=0,7.
Два варианта: 1 попал 2 мимо или наоборот. Получим p1*(1-p2)+p2(1-p1)=0,6*0,3+0,4*0,7=0,46