2) Воспользуемся формулой нахождения длины вектора: вектор |OP| (то есть серединная прямая АВ) = √x²+y²
Тогда решение: OP = √(-8²)+5² = 64+25 = 89
3) Воспользуемся формулой нахождения координат середины отрезка: x = ; y =
Тогда: x = ; y =
4) Строим центр окружности на координатных прямых, радиус окружности которой равняется 4. Нам нужно уравнение окружности. (Сорян, построишь сам всё, села батарея на телефоне)
Формула уравнения: (x - a)² + (y - b)² = r², а известные нам значения: a = 5, b = -6, r = 4
A (4;2) ; B (-8;5)
1) Воспользуемся формулой нахождения координат вектора: вектор AB = {x₂-x₁ ; y₂-y₁}
Для удобства сделаем так: A (x₁;y₁) B (x₂;y₂)
Тогда решение: {-8-4 ; 5-2} = {-12;3}
2) Воспользуемся формулой нахождения длины вектора: вектор |OP| (то есть серединная прямая АВ) = √x²+y²
Тогда решение: OP = √(-8²)+5² = 64+25 = 89
3) Воспользуемся формулой нахождения координат середины отрезка: x = ; y =
Тогда: x = ; y =
4) Строим центр окружности на координатных прямых, радиус окружности которой равняется 4. Нам нужно уравнение окружности. (Сорян, построишь сам всё, села батарея на телефоне)
Формула уравнения: (x - a)² + (y - b)² = r², а известные нам значения: a = 5, b = -6, r = 4
Вставляем в уравнение и решаем:
(x-5)² + (y+6)² = 16, распишем.
x²-10x+25 + y²+12y+36 = 16
x²-10x+25 + y²+12y+20 = 0
Решаем дискриминанты:
1) x²-10x+25 = 0
D = b²-4ac => (-10²)-4*1*25 = 100-100 = 0=0, 1 корень.
x =
x₁ =
2) y²+12y+20 = 0
D = b²-4ac => 12²-4*1*20 = 144 - 80 = √64 = 8>0, 2 корня.
x =
x₁ =
x₂ =
ответ: -10; -2; 5.
b+c=3a; a+c=3b; a+b=3c; a=0; b=0; c=0.
Поменяв местами числители и знаменатели, получаем
P=\frac{b}{a}+\frac{c}{a}=\frac{a}{b}+\frac{c}{b}=\frac{a}{c}+\frac{b}{c}P=ab+ac=ba+bc=ca+cb
Требуется найти \frac{b}{a}+\frac{c}{a}-5(\frac{a}{b}+\frac{c}{b})=-4P.ab+ac−5(ba+bc)=−4P. Остается найти P.
Из первого равенства следует, что c(b-a)=a^2-b^2.c(b−a)=a2−b2. Аналогично получаем a(c-b)=b^2=c^2;\ b(a-c)=c^2-a^2.a(c−b)=b2=c2; b(a−c)=c2−a2.
1-й случай. Среди a, b, c есть разные. Пусть, например, a не равен b. Сокращая первое из полученных равенств на (b-a), получаем c=-(a+b),
а тогда
\frac{b}{a}+\frac{c}{a}=\frac{a}{b}+\frac{c}{b}=\frac{a}{c}+\frac{b}{c}=-1;\ P=-1; -4P=4ab+ac=ba+bc=ca+cb=−1; P=−1;−4P=4
2-й случай. a=b=c. В этом случае P=2; - 4P= - 8.
В ответ нужно было записать сумму получившихся значений: 4 - 8= - 4