Пусть собственная скорость лодки х, а скорость течения реки у. Тогда по течению реки лодка со скоростью (х+у), а против течения реки (х-у). Можно составить уравнение 3*(x+y)+4*(x-y)=108 Известно, что скорость лодки против течения составляет 60% от скорости лодки по течению, то есть (х-у)=60*(х+у)/100=0,6(х+у) 3*(x+y)+4*0,6*(x+y)=108 3*(x+y)+2,4(x+y)=108 5,4*(x+y)=108 x+y=108:5,4=20 км/ч - скорость лодки по течению реки x-y=0,6*20=12 км/ч - скорость лодки против течения реки
Из второго уравнения выразим х (можно и из первого, разницы нет): х=12+у и подставим в первое уравнение 12+y+y=20 2y=20-12 2y=8 y=8:2=4 км/ч - скорость течения реки.
3*(x+y)+4*(x-y)=108
Известно, что скорость лодки против течения составляет 60% от скорости лодки по течению, то есть
(х-у)=60*(х+у)/100=0,6(х+у)
3*(x+y)+4*0,6*(x+y)=108
3*(x+y)+2,4(x+y)=108
5,4*(x+y)=108
x+y=108:5,4=20 км/ч - скорость лодки по течению реки
x-y=0,6*20=12 км/ч - скорость лодки против течения реки
Из второго уравнения выразим х (можно и из первого, разницы нет):
х=12+у
и подставим в первое уравнение
12+y+y=20
2y=20-12
2y=8
y=8:2=4 км/ч - скорость течения реки.
199 чисел кратны 5 : [999 : 5] = 199 *.
В этом же интервале имеются 142 числа, кратных 7 : [999 : 7] = 142* .
Среди 142 чисел, кратных 7, имеются числа, которые делятся также и на 5, то есть кратные 35.
Всего таких чисел 28: [999 : 35]= 28* .
Эти 28 чисел уже учтены в числе 199, найденном ранее.
Поэтому количество чисел, меньших 1000, которые делятся либо на 5, либо на 7, равно 199 + 142 - 28 = 313.
В рассматриваемом интервале остается 999 - 313 = 686 чисел,
которые не делятся ни на 5, ни на 7.
* [N] - целая часть числа N . Например, [13,45] = 13.