А)3\4 и 9\12 Чтобы сравнить эти дроби, надо привести их к общему знаменателю. Домножаем 3\4 на 3 и получаем 9\12. Следовательно, дроби равны. 3\4=9\12 Б)7\5 и 3\2 Чтобы сравнить эти дроби, надо найти их целую часть. Делим числитель на знаменатель и выносим целое число: 1 целая 2\5 и 1 целая 1\2. Теперь приводим их к общему знаменателю: 1 целая 4\10 и 1 целая 5\10. Следовательно, вторая дробь больше первой. 7\5<3\2 В)5\6 и 5\8 в этом случае действуем аналогично первому: находим общий знаменатель. 40\48 и 30\48. Следовательно, первая дробь больше второй. 5\6>5\8
Пояснение:
Порядок действий при вычислениях:
• (1*) - Возведение числа в степень;
• (2) - Вычисления в скобках (или раскрытие скобок);
• (3) - Умножение / деление (соблюдая порядок слева на право);
• (4) - Сложение / вычитание (соблюдая порядок слева на право).
Решение (1):
Из пояснения следует, что последним действием в выражении
(38 + 0 ÷ 1) × 18 - 78
нужно выполнить вычитание.
Решение (2):
(38 + 0 ÷ 1) × 18 - 78 = ?
² ¹ ³ ⁴
1) 0 ÷ 1 = 0;
2) 38 + 0 = 38;
3) 38 × 18 = 684;
4) 684 - 78 = 606.
ответ: 1) последним нужно выполнять действие вычитание (4); 2) 606.
Удачи Вам! :)
3\4=9\12
Б)7\5 и 3\2 Чтобы сравнить эти дроби, надо найти их целую часть. Делим числитель на знаменатель и выносим целое число: 1 целая 2\5 и 1 целая 1\2. Теперь приводим их к общему знаменателю: 1 целая 4\10 и 1 целая 5\10. Следовательно, вторая дробь больше первой.
7\5<3\2
В)5\6 и 5\8 в этом случае действуем аналогично первому: находим общий знаменатель. 40\48 и 30\48. Следовательно, первая дробь больше второй.
5\6>5\8