Реши задачу. Cubesat («кубсат»), миниатюрный спутник, выполненный в форме кубика. В последнее время появились более крупные модели спутников. Размеры моделей Cubesаt указаны в таблице. На сколько увеличился объем спутников?
Из условия, что треугольники ABC и CAM подобны, вытекает равенство АМ и АС. Используем формулу медианы: ma = (1/2)*√(2b²+2c²-a²). Для равнобедренного треугольника АВС стороны АВ (с) и ВС (а) равны а. Получим с учетом АМ = АС = в: b= (1/2)√(2b²+a²). 2b= √(2b²+a²) возведём в квадрат. 4b² = 2b²+a². 2b² = a². b = a/√2. Находим косинус угла С при основании треугольника. cos C = (b/2)/a = a/)2√2*a) = 1/(2√2) = √2/4. Для прямоугольного треугольника BCF cos C = sin(B/2). Находим cos(B/2) = √(1 - sin²(B/2)) = √(1 - (2/16)) = √(7/8). Тогда косинус угла В как двойного по отношению к (В/2) равен: cos B = cos²(B/2) - sin²(B/2) = (7/8) - (2/16) = 6/8 = 3/4. Теперь можно определить длину боковых сторон из треугольника ВМЕ, где его гипотенуза ВМ равна половине стороны ВС (а). а = 2*ВЕ/(cos B) = 2*9√14/(3/4) = 24√14. Основание АС (в) и медиана АМ равны а/√2 = 24√14/√2 = 24√7. Высота BF равна: BF = √(а² - (в/2)²) = √((24√14)² - (12√7)²) = √( 8064 -1008) = √7056 = 84. Площадь S треугольника АВС равна: S = (1/2)AC*BF = (1/2)*24√7*84 = 1008√7. Отсюда находим искомый радиус описанной около треугольника АВС окружности: R = a²b/(4S) = ((24√14)²*24√7)/(4*1008√7) = 8064/168 = 48.
Вот смотрите: если в классе десять сто килограммовых девочек и две сорока-килограммовых, то по-вашему получается, что средний вес девочек в классе: (100+40)/2=70 кг? А по-правильному нужно еще учитывать сколько в каждой группе с одинаковым весом всего девочек (вагонов и тд). Если б дело касалось класса, то всех девочек загнали на весы, а потом вес на всех разделили, вот так: (100*10+80)/(10+2)=1080/12=90 , что больше похоже на истину в таком "тучном" классе, не правда ли? Значит, с вагонами решение правильное: (9*8,3+6*7,2)/(9+6)=7,86
Используем формулу медианы:
ma = (1/2)*√(2b²+2c²-a²).
Для равнобедренного треугольника АВС стороны АВ (с) и ВС (а) равны а.
Получим с учетом АМ = АС = в:
b= (1/2)√(2b²+a²).
2b= √(2b²+a²) возведём в квадрат.
4b² = 2b²+a².
2b² = a².
b = a/√2.
Находим косинус угла С при основании треугольника.
cos C = (b/2)/a = a/)2√2*a) = 1/(2√2) = √2/4.
Для прямоугольного треугольника BCF cos C = sin(B/2).
Находим cos(B/2) = √(1 - sin²(B/2)) = √(1 - (2/16)) = √(7/8).
Тогда косинус угла В как двойного по отношению к (В/2) равен:
cos B = cos²(B/2) - sin²(B/2) = (7/8) - (2/16) = 6/8 = 3/4.
Теперь можно определить длину боковых сторон из треугольника ВМЕ, где его гипотенуза ВМ равна половине стороны ВС (а).
а = 2*ВЕ/(cos B) = 2*9√14/(3/4) = 24√14.
Основание АС (в) и медиана АМ равны а/√2 = 24√14/√2 = 24√7.
Высота BF равна:
BF = √(а² - (в/2)²) = √((24√14)² - (12√7)²) = √( 8064 -1008) = √7056 = 84.
Площадь S треугольника АВС равна:
S = (1/2)AC*BF = (1/2)*24√7*84 = 1008√7.
Отсюда находим искомый радиус описанной около треугольника АВС окружности:
R = a²b/(4S) = ((24√14)²*24√7)/(4*1008√7) = 8064/168 = 48.
(100*10+80)/(10+2)=1080/12=90 , что больше похоже на истину в таком "тучном" классе, не правда ли?
Значит, с вагонами решение правильное: (9*8,3+6*7,2)/(9+6)=7,86