1)если вам известны объем v и высота конуса h, выразите его радиус основания r из формулы v=1/3∙πr²h. получите: r²=3v/πh, откуда r=√(3v/πh). 2)если вам известны площадь боковой поверхности конуса s и длина его образующей l, выразите радиус r из формулы: s=πrl. вы получите r=s/πl. 3)следующие способы нахождения радиуса основания конуса базируются на утверждении, что конус образован при вращении прямоугольного треугольника вокруг одного из катетов к оси. так, если вам известны высота конуса h и длина его образующей l, то для нахождения радиуса r вы можете воспользоваться теоремой пифагора: l²=r²+h². выразите из данной формулы r, получите: r²=l²–h² и r=√(l²–h²). 4)используйте правила соотношений между сторонами и углами в прямоугольном треугольнике. если известны образующая конуса l и угол α между высотой конуса и его образующей, найдите радиус основания r, равный одному из катетов прямоугольного треугольника, по формуле: r=l∙sinα. 5)если известны образующая конуса l и угол β между радиусом основания конуса и его образующей, найдите радиус основания r по формуле: r=l∙cosβ. если известны высота конуса h и угол α между его образующей и радиусом основания, найдите радиус основания r по формуле: r=h∙tgα. 6)пример: образующая конуса l равна 20 см и угол α между образующей и высотой конуса равен 15º. найдите радиус основания конуса. решение: в прямоугольном треугольнике с гипотенузой l и острым углом α противолежащий этому углу катет r вычисляется по формуле r=l∙sinα. подставьте соответствующие значения, получите: r=l∙sinα=20∙sin15º. sin15º находится из формул тригонометрических функций половинного аргумента и равен 0,5√(2–√3). отсюда катет r=20∙0,5√(2–√3)=10√(2–√3)см. соответственно, радиус основания конуса r равен 10√(2–√3)см. 7)частный случай: в прямоугольном треугольнике катет, противолежащий углу в 30º, равен половине гипотенузы. таким образом, если известны длина образующей конуса и угол между его образующей и высотой равен 30º, то найдите радиус по формуле: r=1/2l.
Обозначим сторону маленького квадрата за х. Тогда площадь основания коробки будет равна S=(a-2x)^2, а объем коробки будет равен V=(a-2x)^2*x=a^2*x-4*a*x^2+4*x^3. Для нахождения максимума объема продифференцируем эту функцию по x, получим 12*x^2-8*a*x+a^2. Приравняем производную нулю и решим полученное уравнение относительно x: x1,2=(8a+/-sqrt(64a^2-48a^2))/24=(8a+/-4a)/24 x1=1/6*a x2=1/2*a Очевидно, что при x=1/2*объем коробки равен 0, и равенство производной нулю в этой точке указывает на минимум функции объема (при изменении х от 0 до 1/2*a).. А x=1/6*a является точкой максимума функции объема. ответ: сторона вырезаемого по углам квадрата должна быть равна 1/6 части стороны исходного квадрата.
Для нахождения максимума объема продифференцируем эту функцию по x, получим 12*x^2-8*a*x+a^2. Приравняем производную нулю и решим полученное уравнение относительно x:
x1,2=(8a+/-sqrt(64a^2-48a^2))/24=(8a+/-4a)/24
x1=1/6*a
x2=1/2*a
Очевидно, что при x=1/2*объем коробки равен 0, и равенство производной нулю в этой точке указывает на минимум функции объема (при изменении х от 0 до 1/2*a)..
А x=1/6*a является точкой максимума функции объема.
ответ: сторона вырезаемого по углам квадрата должна быть равна 1/6 части стороны исходного квадрата.