попробуем построить, ну, например для 4-х точек (см.рис).
Прямая проходит через каждые две точки. Т.е. нужно посчитать сколько различных пар точек можно выбрать из 4-х точек. Это - известная в комбинаторике формула для подсчета числа сочетаний (именно сочетаний, а не размещений, потому, что прямая АВ и прямая ВА - одна и таже прямая). Подсчитаем для 4-х точек:
C₄²=4!/(4-2)!4!=4!/(2!*2!)=3*4/2=6;
и действительно видим 6 прямых. Тогда для 20 точек:
Проекция - основание перпендикуляра из точки A на данную прямую. Пусть точка B - точка на данной прямой, в которую спроектировалась т. A. Выразим "у" в уравнении прямой:
По теореме о двух перпендикулярных прямых с уравнениями у1=k1x+b1 и y2=k2x+b2: k1*k2=-1
, отсюда получаем, что . запишем уравнение прямой AB: . Чтобы узнать коэффициент b2, подставим в уравнение координаты точки A (т.к. эта прямая проходит через точку A).
Теперь когда мы знаем уравнения обеих прямых, и то, что они пересекаются, найдем точку их пересечения, приравняв уравнения друг к другу:
Получили первую координату искомой точки. Теперь найдем вторую координату подставив первую координату в любое из уравнений:
190 прямых
Пошаговое объяснение:
попробуем построить, ну, например для 4-х точек (см.рис).
Прямая проходит через каждые две точки. Т.е. нужно посчитать сколько различных пар точек можно выбрать из 4-х точек. Это - известная в комбинаторике формула для подсчета числа сочетаний (именно сочетаний, а не размещений, потому, что прямая АВ и прямая ВА - одна и таже прямая). Подсчитаем для 4-х точек:
C₄²=4!/(4-2)!4!=4!/(2!*2!)=3*4/2=6;
и действительно видим 6 прямых. Тогда для 20 точек:
C₂₀²=20!/((20-2)!2!)=19*20/2=190.
Выразим "у" в уравнении прямой:
По теореме о двух перпендикулярных прямых с уравнениями у1=k1x+b1 и y2=k2x+b2: k1*k2=-1
, отсюда получаем, что .
запишем уравнение прямой AB:
. Чтобы узнать коэффициент b2, подставим в уравнение координаты точки A (т.к. эта прямая проходит через точку A).
Теперь когда мы знаем уравнения обеих прямых, и то, что они пересекаются, найдем точку их пересечения, приравняв уравнения друг к другу:
Получили первую координату искомой точки.
Теперь найдем вторую координату подставив первую координату в любое из уравнений:
ответ: A(1;2)