2 C самого начала обратим внимание на то, что предложенную задачу можно выполнить как формул, так и логических рассуждений. B данном случае воспользуемся вторым вариантом.
Если сделать допущение, что нет никаких критериев выбора (все 8 учеников условно равны), то первого ученика мы будем выбирать из 8 школьников (т.e. есть 8 вариантов выбора). Соответственно, второго будем выбирать из 7, a третьего - из 6. Тогда всего ответ: всего Пары (n; m) и (m; n) это одна пара.
С (10; 2) = 10 / 2 8=45
4
Всего тетрадей 8+4 = 12 тетрадей всего в папке. Вероятность того, что вытащили линеечную тетрадь в первый раз равна 8/12 = 2/3. формула есть такая. вероятность равна частному требуемых исходов на всевозможные
во второй раз если выбирать то теперь выбирается из 11 тетрадей. и тетрадок в линейку уже не 8, а 7
вероятность будет 7/11
А общая вероятность того, что обе тетрадки в линию равна произведению вероятностей
(2/3)*(7/11) = 14/33 = приблизительно = 42%
5
Всего всевозможных исходов: 6+8+5=19 из них 8 благоприятные исходы.
Пошаговое объяснение:
2 C самого начала обратим внимание на то, что предложенную задачу можно выполнить как формул, так и логических рассуждений. B данном случае воспользуемся вторым вариантом.
Если сделать допущение, что нет никаких критериев выбора (все 8 учеников условно равны), то первого ученика мы будем выбирать из 8 школьников (т.e. есть 8 вариантов выбора). Соответственно, второго будем выбирать из 7, a третьего - из 6. Тогда всего ответ: всего Пары (n; m) и (m; n) это одна пара.
С (10; 2) = 10 / 2 8=45
4
Всего тетрадей 8+4 = 12 тетрадей всего в папке. Вероятность того, что вытащили линеечную тетрадь в первый раз равна 8/12 = 2/3. формула есть такая. вероятность равна частному требуемых исходов на всевозможные
во второй раз если выбирать то теперь выбирается из 11 тетрадей. и тетрадок в линейку уже не 8, а 7
вероятность будет 7/11
А общая вероятность того, что обе тетрадки в линию равна произведению вероятностей
(2/3)*(7/11) = 14/33 = приблизительно = 42%
5
Всего всевозможных исходов: 6+8+5=19 из них 8 благоприятные исходы.
m = 8
n = 19
Искомая вероятность: P = m/n = 8/19
Пошаговое объяснение:
''-2y'+5y=sinx y(0)=1 y'(0)=2
1) Общее
y"-2y'+5y=0
Характеристическое уравнение:
K^2-2k+5=0
d=4-20=-16
K1=1+4i; K2=1-4i
Y=e^x (C1 cos2x+C2 sin2x)
2)Частное решение
y=A cosx+ B sinx
y'=(A cosx+B sinx)'=-Asinx+Bcosx
y"=(-Asinx+Bcosx)'=-Acosx-Bsinx
Подставим
-Acosx-Bsinx+2Asinx-2Bcosx+5Acosx+5Bsinx=sinx
(4A-2B)cosx+(4B+2A)sinx=sinx
{4A-2B=0 , 2A+4B=1 {4A-2B=0 , 4A+8B=2 {4A=2B , 4A+8B=2
2B+8B=2
10B=2
B=0,2
A=0,1
y(с изогнутой линией наверху)=0,1cosx+0,2sinx
3)y=Y+y(с изогнутой линией наверху)=e^x (C1 cos2x+C2 sin2x)+0,1cosx+0,2sinx
4) Если все верно, то что-то нужно сделать с этим "y(0)=1 y'(0)=2" условием. Не понимаю что.