) 6sin²x+13sinx+5 = 0
D = 13² - 4·6·5 = 49
√D = 7
sinx₁ = (-13 - 7):12 = -20/17 < -1 (не может быть решением, т.к. E(sinx) =[-1; +1]
sinx₂ = (-13 + 7):12= -0.5
x₂ = (-1)^(k+1)· π/6 + πk, k ∈ Z
2) √(11·cosx) = 0
cosx = 0
x₃ = 0.5π +πn, n∈ Z
) 6sin²x+13sinx+5 = 0
D = 13² - 4·6·5 = 49
√D = 7
sinx₁ = (-13 - 7):12 = -20/17 < -1 (не может быть решением, т.к. E(sinx) =[-1; +1]
sinx₂ = (-13 + 7):12= -0.5
x₂ = (-1)^(k+1)· π/6 + πk, k ∈ Z
2) √(11·cosx) = 0
cosx = 0
x₃ = 0.5π +πn, n∈ Z