Численное решение x1=0.874032048898, x2=−0.874032048898x2,x3=−2.28824561127, x4=2.28824561127. График пересекает ось Y, когда x равняется 0: подставляем x = 0 в x^4 - 6*x^2 + 4. 0^4−0+4 = 4Результат: f(0)=4 Точка: (0, 4)
5. Найти асимптоты графика - их нет.
6. Вычислить производную функции f'(x) и определить критические точки.
f'(x) = 4х³ - 12х = 4х(х² - 3).
Приравниваем производную нулю: 4х(х² - 3) = 0.
Получаем 3 корня (это критические точки):
х = 0, х = √3 и х = -√3.
7. Найти промежутки монотонности функции.
Исследуем знаки производной:
х = -2 -1.732 -1.5 -0.5 0 0.5 1.5 1.732 2 y'=4х³ - 12х -8 0 4.5 5.5 0 -5.5 -4.5 0 8. Где производная положительна - там функция возрастает, где отрицательна - там функция убывает. Возрастает на промежутках [-sqrt(3), 0] U [sqrt(3), oo). Убывает на промежутках (-oo, -sqrt(3)] U [0, sqrt(3)]
8. Определить экстремумы функции f(x).
Где производная меняет знак с - на + там минимум функции, где меняет знак с + на - там максимум.
экстремумы в точках:
(0, 4) максимум,
(-√ 3, -5) и (√ 3, -5) минимумы.
9. Вычислить вторую производную f''(x).
Приравниваем нулю вторую производную:
f''(x) = 12х²-12 =12(х² - 1) = 0.
Имеем 2 точки перегиба функции: х = 1 и х = -1.
10. Определить направление выпуклости графика и точки перегиба.
Вогнутая на промежутках (-oo, -1] U [1, oo). Выпуклая на промежутках [-1, 1]
11. Построить график, используя полученные результаты исследования - в приложении.
На заданном интервале графика от -1 до 1 будет только выпуклая его часть.
Пусть производительность первого рабочего х1, второго - х2, тогда 2*(х1+х2)=1 х2+х2=1/2-х1 х2=(1/2)-х1 1/3*х1+3=2/3*х2 Подставим в уравнение 1/3*х1+3=2/3*(1/2-х1) 1/3*x1+3=2/(3-6*x1)/2 1/3*x1+3=4/(3-6*x1) 4/(3-6*x1)-1/3*x1-3=0 4*(3*x1)-(3-6*x1)-3*3*x1*(3-6*x1)=0 12*x1-3+6*x1-27*x1+54*x1^2=0 54*x1^2-9*x1-3=0 (/3) 18*x1^2-3*x1-1=0 х=(3±√9+72)/36=(3±9)/36 х=3-9)/36 не подходит х=(3+9)/36=1/3 х1=1/3 производительность в 1 день первого рабочего, для выполнения задания ему нужно 3*1/3=1 3 дня. х2=1/2-1/3=1/6 производительность в 1 день второго рабочего, для выполнения задания ему нужно 6*1/6=1 6 дней.
Общая схема исследования и построения графика функции
1. Найти область определения функции и область значений функции, выявить точки разрыва, если они есть.
Область определения функции D(x)( = R.
При определении области значений функции задача сводится к нахождению наибольшего и наименьшего значения функции (это будет в пункте 8).
2. Выяснить, является ли функция четной или нечетной.
Проверим функцию чётна или нечётна с соотношений f = f(-x) и f = -f(-x).
(-x)^4-6*(-x)^2+4 = x^4-6x^2+4.То есть, f = f(-x). Функция чётная.
3. Выяснить, является ли функция периодической - нет.
4. Найти точки пересечения графика с осями координат (нули функции).
График функции пересекает ось X при f = 0
x^4−6x^2+4=0.значит надо решить уравнение:
Замена: х^2 = t.
Имеем квадратное уравнение t^2-6t+4=0
Квадратное уравнение, решаем относительно t:
Ищем дискриминант:D=(-6)^2-4*1*4=36-4*4=36-16=20;
Дискриминант больше 0, уравнение имеет 2 корня:t_1=(√20-(-6))/(2*1)=(√20+6)/2=√20/2+6/2=√20/2+3 =
= √5 + 3 ≈ 5.236068;t_2=(-√20-(-6))/(2*1)=(-√20+6)/2=-√20/2+6/2=-√20/2+3 =
= -√5 + 3 ≈ 0.763932.
Тогда получаем 4 корня:
х_1 = -(-√5 + 3),
х_2 = √(-√5 + 3),
х_3 = -√(√5 + 3),
х_4 = √(√5 + 3).Точки пересечения с осью X:
Численное решение
x1=0.874032048898,
x2=−0.874032048898x2,x3=−2.28824561127,
x4=2.28824561127.
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в x^4 - 6*x^2 + 4.
0^4−0+4 = 4Результат:
f(0)=4
Точка:
(0, 4)
5. Найти асимптоты графика - их нет.
6. Вычислить производную функции f'(x) и определить критические точки.
f'(x) = 4х³ - 12х = 4х(х² - 3).
Приравниваем производную нулю: 4х(х² - 3) = 0.
Получаем 3 корня (это критические точки):
х = 0, х = √3 и х = -√3.
7. Найти промежутки монотонности функции.
Исследуем знаки производной:
х = -2 -1.732 -1.5 -0.5 0 0.5 1.5 1.732 2y'=4х³ - 12х -8 0 4.5 5.5 0 -5.5 -4.5 0 8.
Где производная положительна - там функция возрастает, где отрицательна - там функция убывает.
Возрастает на промежутках [-sqrt(3), 0] U [sqrt(3), oo).
Убывает на промежутках (-oo, -sqrt(3)] U [0, sqrt(3)]
8. Определить экстремумы функции f(x).
Где производная меняет знак с - на + там минимум функции, где меняет знак с + на - там максимум.
экстремумы в точках:
(0, 4) максимум,(-√ 3, -5) и (√ 3, -5) минимумы.
9. Вычислить вторую производную f''(x).
Приравниваем нулю вторую производную:
f''(x) = 12х²-12 =12(х² - 1) = 0.
Имеем 2 точки перегиба функции: х = 1 и х = -1.
10. Определить направление выпуклости графика и точки перегиба.
Вогнутая на промежутках (-oo, -1] U [1, oo).
Выпуклая на промежутках [-1, 1]
11. Построить график, используя полученные результаты исследования - в приложении.
На заданном интервале графика от -1 до 1 будет только выпуклая его часть.
2*(х1+х2)=1
х2+х2=1/2-х1
х2=(1/2)-х1
1/3*х1+3=2/3*х2 Подставим в уравнение
1/3*х1+3=2/3*(1/2-х1)
1/3*x1+3=2/(3-6*x1)/2
1/3*x1+3=4/(3-6*x1)
4/(3-6*x1)-1/3*x1-3=0
4*(3*x1)-(3-6*x1)-3*3*x1*(3-6*x1)=0
12*x1-3+6*x1-27*x1+54*x1^2=0
54*x1^2-9*x1-3=0 (/3)
18*x1^2-3*x1-1=0
х=(3±√9+72)/36=(3±9)/36
х=3-9)/36 не подходит
х=(3+9)/36=1/3
х1=1/3 производительность в 1 день первого рабочего, для выполнения задания ему нужно 3*1/3=1 3 дня.
х2=1/2-1/3=1/6 производительность в 1 день второго рабочего, для выполнения задания ему нужно 6*1/6=1 6 дней.