От пристани А к пристани Б вниз по течению реки стартует катер, а одновременно с ним по берегу – велосипедист, который движется неравномерно. Расстояние между пристанями 6 км.
Капитану катера передается информация о скорости велосипедиста, и он, моментально реагируя, поддерживает скорость катера относительно воды вдвое больше скорости велосипедиста. Через 30 мин катер доплыл до пристани Б. Определите скорость течения реки, если к этому моменту велосипедист проехал всего лишь 1/3 пути.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - скорость велосипедиста.
2х - скорость катера.
у - скорость течения реки.
(2х + у) - скорость катера по течению.
6 км - расстояние катера.
6/(2х + у) - время катера в пути.
1/3 пути = 2 км - расстояние велосипедиста.
Время в пути катера и велосипедиста одинаковое, равно 0,5 часа.
По условию задачи система уравнений:
х * 0,5 = 2
6/(2х + у) = 0,5
Вычислить х в первом уравнении:
0,5х = 2
х = 2/0,5
х = 4 (км/час) - скорость велосипедиста.
Подставить значение х во второе уравнение и вычислить у:
6/(2*4 + у) = 0,5
6/(8 + у) = 0,5
Умножить уравнение на (8 + у), чтобы избавиться от дробного выражения:
В решении.
Пошаговое объяснение:
От пристани А к пристани Б вниз по течению реки стартует катер, а одновременно с ним по берегу – велосипедист, который движется неравномерно. Расстояние между пристанями 6 км.
Капитану катера передается информация о скорости велосипедиста, и он, моментально реагируя, поддерживает скорость катера относительно воды вдвое больше скорости велосипедиста. Через 30 мин катер доплыл до пристани Б. Определите скорость течения реки, если к этому моменту велосипедист проехал всего лишь 1/3 пути.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - скорость велосипедиста.
2х - скорость катера.
у - скорость течения реки.
(2х + у) - скорость катера по течению.
6 км - расстояние катера.
6/(2х + у) - время катера в пути.
1/3 пути = 2 км - расстояние велосипедиста.
Время в пути катера и велосипедиста одинаковое, равно 0,5 часа.
По условию задачи система уравнений:
х * 0,5 = 2
6/(2х + у) = 0,5
Вычислить х в первом уравнении:
0,5х = 2
х = 2/0,5
х = 4 (км/час) - скорость велосипедиста.
Подставить значение х во второе уравнение и вычислить у:
6/(2*4 + у) = 0,5
6/(8 + у) = 0,5
Умножить уравнение на (8 + у), чтобы избавиться от дробного выражения:
6 = 0,5 * (8 + у)
6 = 4 + 0,5у
0,5у = 2
у = 2/0,5
у = 4 (км/час) - скорость течения реки.
Проверка:
2 : 4 = 0,5 (часа) - время велосипедиста, верно.
6 : (2 * 4 + 4) = 6 : 12 = 0,5 (часа) - время катера, верно.
масса одной собаки = 11 кг
масса одной кошки = 0, то есть кошек в задаче фактически нет
Пошаговое объяснение:
пусть
x - масса одной собаки в кг
y - масса одной кошки в кг
составим систему:
4x + 3y = 44
3x + 4y = 33
решаем систему:
из 1 уравнения:
4x = 44 - 3y
x = 11 -3/4y
подставим во 2 уравнение:
3 × (11 - 3/4y) + 4y = 33
33 - 9/4y + 4y = 33
-9/4y + 4y = 0
1 3/4y = 0
y = 0
подставим в 1 уравнение:
x = 11 - 3/4 × 0 = 11
получили, что масса одной кошки = 0, то есть в задаче кошек фактически нет
масса одной собаки = 11 кг