В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Мен234
Мен234
16.03.2021 01:20 •  Математика

Решить диф уравнения 1 порядка с разделением переменных dy/3^√y=dx/1+x^2 найти частное диф уравнения 1 порядка с разделением переменных (1+x^2)dy-2x(y+3)dx=0 y(0)=-1

Показать ответ
Ответ:
MrX01
MrX01
07.10.2020 09:34
1)ду/∛у=дх/(1+х²). 
Интегрируем обе части уравнения, получаем
∫ду/∛у=∫дх/(1+х²)
∫у^(-1/3)ду=∫дх/(1+х²)
(3∛у²)/2=arctgx + C
∛у²=(2arctgx + 2C)/3
у=((2arctgx + 2C)/3)^(3/2).

2)(1+x²)dy-2x(y+3)dx=0
(1+x²)dy=2x(y+3)dx
Умножим обе части уравнения на 1/((1+x²)(y+3)):
dy/(y+3)=2xdx/(1+x²)
Интегрируя обе части, получаем:
㏑║y+3║=㏑║1+x²║+ С
║y+3║=(1+x²)*е^С - общее решение.
Зная, что при х=0 у=-1, находим С:
2=1*е^С
С=㏑2.
Отсюда частное решение:
║y+3║=(1+x²)*е^㏑2
║y+3║=2(1+x²).
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота