Если есть смешанная дробь, в дробной части которой числитель больше знаменателя (смешанная неправильная дробь), то нужно в этой дробной части числитель разделить на знаменатель нацело, с остатком. Результат от деления (частное) прибавить к целой части исходной дроби - это будет целая часть нового смешанного числа (смешанной правильной дроби). В дробной части нового смешанного числа числителем будет остаток от деления, а знаменателем - частное (знаменатель дробной части исходной смешанной дроби)
Пример 2(7/2) - две целых, семь вторых. Делим 7 на 2, получаем в частном 3 и в остатке 1 (т. к. 2*3 + 1 = 7), прибавляем частное 3 к целой части исходной смешанной дроби 2, получаем 5 - это целая часть нового смешанного числа. В дробной части числителем будет остаток от деления 1, а знаменателем - знаменатель дробной части исходного смешанного числа 2, итого получаем 5(1/2) - пять целых, одна вторая.
Если в дробной части исходного смешанного числа числитель делится на знаменатель без остатка, то у нового смешанного числа дробной части не будет, получится целое число, равное сумме целой части исходного смешанного числа и результата от деления числителя на знаменатель дробной части. Пример: 7(8/4) 8 делим на 4, получаем 2, прибавляем это к целой части исходного смешанного числа, получаем целое число 9.
Пример 2(7/2) - две целых, семь вторых. Делим 7 на 2, получаем в частном 3 и в остатке 1 (т. к. 2*3 + 1 = 7), прибавляем частное 3 к целой части исходной смешанной дроби 2, получаем 5 - это целая часть нового смешанного числа. В дробной части числителем будет остаток от деления 1, а знаменателем - знаменатель дробной части исходного смешанного числа 2, итого получаем 5(1/2) - пять целых, одна вторая.
Если в дробной части исходного смешанного числа числитель делится на знаменатель без остатка, то у нового смешанного числа дробной части не будет, получится целое число, равное сумме целой части исходного смешанного числа и результата от деления числителя на знаменатель дробной части. Пример: 7(8/4) 8 делим на 4, получаем 2, прибавляем это к целой части исходного смешанного числа, получаем целое число 9.
1.
\begin{gathered} < var > \\y=e-\ln x\\ y'=-\frac{1}{x}\\ < /var > \end{gathered}
<var>
y=e−lnx
y
′
=−
x
1
</var>
2.
\begin{gathered} < var > \\y=\ln(10-5x)\\ y'=\frac{1}{10-5x}\cdot-5\\ y'=\frac{-5}{10-5x}\\ y'=\frac{-5}{5(2-x)}\\ y'=\frac{1}{x-2} < /var > \end{gathered}
<var>
y=ln(10−5x)
y
′
=
10−5x
1
⋅−5
y
′
=
10−5x
−5
y
′
=
5(2−x)
−5
y
′
=
x−2
1
</var>
3.
\begin{gathered} < var > \\y=3-4\ln (1-x)\\ y'=-4\cdot\frac{1}{1-x}\cdot(-1)\\ y'=-\frac{4}{x-1} < /var > \end{gathered}
<var>
y=3−4ln(1−x)
y
′
=−4⋅
1−x
1
⋅(−1)
y
′
=−
x−1
4
</var>
4.
\begin{gathered} < var > \\y=\ln \frac{1}{x}\\ y'=\frac{1}{\frac{1}{x}}\cdot(-\frac{1}{x^2})\\ y'=-\frac{x}{x^2}\\ y'=-\frac{1}{x} < /var > \end{gathered}
<var>
y=ln
x
1
y
′
=
x
1
1
⋅(−
x
2
1
)
y
′
=−
x
2
x
y
′
=−
x
1
</var>
5.
\begin{gathered} < var > \\y=1-3^x\\ y'=-3^x \ln 3 < /var > \end{gathered}
<var>
y=1−3
x
y
′
=−3
x
ln3</var>