Общее число возможных элементарных исходов равно числу сочетаний C₁₆⁴, где 4 - число отбирания учебников из 16.
Число исходов, благоприятствующих интересующему событию: 2 учебника без переплёта из 16-14=2 учебников без переплёта можно отобрать . Остальные 2 учебника будут в переплёте. Выбор 2-х из 14 учебников в переплёте можно осуществить .
Отсюда следует, что число благоприятствующих исходов равно C₂²·C₁₄².
0,05
Пошаговое объяснение:
Общее число возможных элементарных исходов равно числу сочетаний C₁₆⁴, где 4 - число отбирания учебников из 16.
Число исходов, благоприятствующих интересующему событию: 2 учебника без переплёта из 16-14=2 учебников без переплёта можно отобрать . Остальные 2 учебника будут в переплёте. Выбор 2-х из 14 учебников в переплёте можно осуществить .
Отсюда следует, что число благоприятствующих исходов равно C₂²·C₁₄².
Искомая вероятность равна:
P=(C₂²·C₁₄²)/C₁₆⁴=(2!/(2!·0!) ·14!/(2!·12!))/(16!/(4!·12!))=(1/1 ·(13·14)/(1·2))/((13·14·15·16)/(1·2·3·4))=(3·4)/(15·16)=1/(5·4)=1/20=0,05
Пошаговое объяснение:
По формуле нахождения определённого члена:
C(k; n) ·a^(n-k) ·b^k, где
С- число сочетаний из n (показатель степени) по k (порядковый номер члена разложения, который берётся на единицу меньше находимого;
a; b - аргументы выражения.
а) 3-й член разложения (a+1)⁸:
C₈²·a⁸⁻²·1²=8!/(2!·(8-2)!) ·a⁶=8!/(2!·6!) ·a⁶=(7·8)/(1·2) ·a⁶=7·4a⁶=28a⁶
б) 6-й член разложения (1-2b)²¹:
C₂₁⁵·1²¹⁻⁵·(-2b)⁵=21!/(5!·16!) ·1¹⁶·(-32b⁵)=20349·(-32b⁵)=-651168b⁵
в) 9-й член разложения (скорее всего такое (√z +z)¹⁰):
С₁₀⁸·(√z)¹⁰⁻⁸+z⁸=10!/(8!·2!) ·(√z)²·z⁸=45z¹⁺⁸=45z⁹