решить хотя бы 1 номер
5. Найдите угловой коэффициент касательной к графику
функции y= cos X в точке с абсциссой Хо=-π/4
6. Найдите наибольшее значение функции
y=x^4 – 3х^2 +5 на отрезке (-3; 2].
7. Из центра О квадрата ABCD к его плоскости проведён
перпендикуляр OM длиной 8 см. Найдите площадь
треугольника ABM, если сторона квадрата равна 12 см.
8. В прямоугольном параллелепипеде длины трёх рёбер,
выходящих из одной вершины, равны 2 дм, 3 дм и 6 дм.
Найдите длины диагоналей параллелепипеда.
9. В прямой призме основание прямоугольный
треугольник с катетами 3 см и 4 см. Боковое ребро
призмы равно 8 см. Найдите площадь полной
поверхности призмы.
10. Дан параллелепипед ABCDA1B1C1D1. Найдите
сумму векторов СС1+ AB + В1С1.
1) многочленом называют выражение, которое является ... суммой определенного количества одночленов;
2) многочлен, состоящий из двух членов, называют ...двучленом;
3) многочлен, состоящий из трёх членов, называют ...трехчленом;
4) многочленом стандартного вида называют многочлен, состоящий из ...одночленов, приведенных к стандартному виду;
5) степенью многочлена стандартного вида называют .... наибольшую степень одночлена, входящего в данный многочлен.
Чтобы понимать данные определения надо знать следующее:
Одночлен - это алгебраическое выражение, которое состоит из произведения чисел, переменных, каждая из которых может входить в произведение в некоторой степени.
Пример: . Есть константа(число) и переменные, содержащие степень. А например одночленом уже не будет.
Далее,
Одночлен называется представленным в стандартном виде, если он представлен в виде произведения числового множителя на первом месте и степеней различных переменных.
т.е. например .
Окей, дальше.
2. Какова степень многочлена:
Определение степени мы уже знаем, так что легко решим.
Очевидно, что тут это
Точно также, тут тройка.
Тут единица.
Тут не очень понял условие, но в любом случае роли это не играет, ответ тут шесть(т.к. x во второй и y в четвертой в сумме дают 6).
3. Запишите многочлен в стандартном виде.
4. Запишите многочлен в стандартном виде.
Тут я опять не уверен, что правильно понял степени.
Но думаю, если я где-то ошибся, то вы справитесь самостоятельно, тут простые задачи.
5. Запишите выражение в виде:
1) суммы каких-либо двучленов;
2) разности каких-либо двучленов;
3) суммы одночлена и трёхчлена;
4) разности трёхчлена и одночлена.
6. Запишите в стандартном виде сумму многочленов и .
7. Запишите в стандартном виде разность многочленов и .
8. Запишите в стандартном виде разность многочленов и .
Введем полную группу гипотез:
H1 = (из первой урны вытащили белый шар, из второй вытащили черный шар; тогда в третьей урне будет 5 белых и 9 черных),
H2 = (из первой урны вытащили белый шар, из второй вытащили белый шар; тогда в третьей урне будет 4 белых и 10 черных),
H3 = (из первой урны вытащили черный шар, из второй вытащили черный шар; тогда в третьей урне будет 6 белых и 8 черных),
H4 = (из первой урны вытащили черный шар, из второй вытащили белый шар; тогда в третьей урне будет 5 белых и 9 черных).
Найдем вероятности гипотез по классическому определению вероятности:
P(H1) = 1/(1+9) * 1/(1+5) = 1/60
P(H2) = 1/(1+9) * 5/(1+5) = 5/60
P(H3) = 9/(1+9) * 1/(1+5) = 9/60
P(H4) = 9/(1+9) * 5/(1+5) = 45/60
Введем событие A = (из третьей урны вытащили белый шар).
Подсчитаем априорные вероятности:
P(A|H1) = P(A|H4) = 5/(5+9)
P(A|H2) = 4/(4+10)
P(A|H3) = 6/(6+8)
Вероятность события A найдем по формуле полной вероятности:
P(A)=P(A|H1)P(H1)+P(A|H2)P(H2)+P(A|H3)P(H3)+P(A|H4)P(H4)
P(A)=5/14*1/60+4/14*5/60+6/14*9/60+5/14*45/60=5/840+20/840+54/840+225/840=304/840=0.3619
ответ: 0.3619
Пошаговое объяснение: