Угол ACB равен 54 градусам. Градусная мера дуги АВ окружности, не содержащей точек D и Е, равна 138 градусам. Найдите угол DAE. ответ дайте в градусах.
----------
Скорее всего, эта задача дается с готовым рисунком.
Угол АСВ образован секущими ВС и АС. пересекающим окружность с центром О в точках D и E
Решение.
Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами
Тогда АВС=(дуга АВ-дуга DЕ):2
54º=(138º-х):2
108º=138º-х
х=30º
Угол DAE вписанный, опирается на дугу DЕ=30º и равен половине ее градусной меры.
∠ DAE=15º
Cпособ 2.
Вписанный угол ВDА опирается на дугу 138º, равен ее половине:
∠ВDА=138º:2=69º
∠DАЕ= ∠DАС
Внешний угол СDА треугольника САD равен сумме углов, не смежных с ним. ⇒
Сторона АВ треугольника АВС лежит в плоскости альфа.Плоскость бетта параллельна плоскости альфа и пересекает стороны АС и ВС в точках А1 и В1 соответственно.Найти длину отрезка А1В1,если АВ=12 см,СВ1:В1В=2:3
Объяснение:
По условию СВ1:В1В=2:3 ⇒на СВ приходится 5 частей.
α║β , то линии пересечения плоскостей параллельны ⇒АВ║А₁В₁.
ΔАВС подобен ΔА₁В₁С по 2 углам : ∠АВС=∠А₁В₁С как соответственные СВ-секущая, ∠С-общий .Поэтому сходственные стороны пропорциональны \frac{AB}{A1B1} =\frac{BC}{B1C}
Угол ACB равен 54 градусам. Градусная мера дуги АВ окружности, не содержащей точек D и Е, равна 138 градусам. Найдите угол DAE. ответ дайте в градусах.
----------
Скорее всего, эта задача дается с готовым рисунком.
Угол АСВ образован секущими ВС и АС. пересекающим окружность с центром О в точках D и E
Решение.
Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами
Тогда АВС=(дуга АВ-дуга DЕ):2
54º=(138º-х):2
108º=138º-х
х=30º
Угол DAE вписанный, опирается на дугу DЕ=30º и равен половине ее градусной меры.
∠ DAE=15º
Cпособ 2.
Вписанный угол ВDА опирается на дугу 138º, равен ее половине:
∠ВDА=138º:2=69º
∠DАЕ= ∠DАС
Внешний угол СDА треугольника САD равен сумме углов, не смежных с ним. ⇒
∠ DАЕ=69º-54º=15º
Сторона АВ треугольника АВС лежит в плоскости альфа.Плоскость бетта параллельна плоскости альфа и пересекает стороны АС и ВС в точках А1 и В1 соответственно.Найти длину отрезка А1В1,если АВ=12 см,СВ1:В1В=2:3
Объяснение:
По условию СВ1:В1В=2:3 ⇒на СВ приходится 5 частей.
α║β , то линии пересечения плоскостей параллельны ⇒АВ║А₁В₁.
ΔАВС подобен ΔА₁В₁С по 2 углам : ∠АВС=∠А₁В₁С как соответственные СВ-секущая, ∠С-общий .Поэтому сходственные стороны пропорциональны \frac{AB}{A1B1} =\frac{BC}{B1C}
A1B1
AB
=
B1C
BC
или \frac{12}{A1B1} =\frac{5}{2}
A1B1
12
=
2
5
или А₁В₁= \frac{24}{5}
5
24
=4,8