В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Саша0726007
Саша0726007
23.10.2022 16:16 •  Математика

Решить интеграл ∫e^(4x) cos5x dx

Показать ответ
Ответ:
lisnyakmashenk
lisnyakmashenk
24.07.2021 16:58

ответ: 5/41*e^(4*x)*sin(5*x)+4/41*e^(4*x)*cos(5*x)+C.

Пошаговое объяснение:

Обозначим искомый интеграл через I(x) и применим к нему метод интегрирования "по частям". Пусть u=e^(4*x) и dv=cos(5*x)*dx, тогда du=4*e^(4*x)*dx и v=1/5*sin(5*x). Отсюда I(x)=1/5*e^(4*x)*sin(5*x)-4/5*∫e^(4*x)*sin(5*x)*dx. Пусть I1(x)=∫e^(4*x)*sin(5*x)*dx, тогда I(x)=1/5*e^(4*x)*sin(5*x)-4/5*I1(x). Для нахождения I1(x) положим u=e^(4*x) и dv=sin(5*x)*dx. Тогда du=4*e^(4*x)*dx, v=-1/5*cos(5*x) и I1(x)=-1/5*e^(4*x)*cos(5*x)+4/5*∫e^(4*x)*cos(5*x)*dx=-1/5*e^(4*x)*cos(5*x)+4/5*I(x). Таким образом, мы получили уравнение: I(x)=1/5*e^(4*x)*sin(5*x)-4/5*[-1/5*e^(4*x)*cos(5*x)+4/5*I(x)], или 41/25*I(x)=1/5*e^(4*x)*sin(5*x)+4/25*e^(4*x)*cos(5*x). Отсюда I(x)=5/41*e^(4*x)*sin(5*x)+4/41*e^(4*x)*cos(5*x)+C.

0,0(0 оценок)
Ответ:
acivnatala
acivnatala
24.07.2021 16:58

Пошаговое объяснение:

на фото

+ в конце припишите произвольную константу С :)


Решить интеграл ∫e^(4x) cos5x dx
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота