В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
kiska625
kiska625
25.01.2020 12:13 •  Математика

решить логарифмическое неравенство)


решить логарифмическое неравенство)

Показать ответ
Ответ:
Elv26
Elv26
15.10.2020 20:41

ответ: x∈(1;2).

Пошаговое объяснение:

Прежде всего заметим, что так как x находится под знаком логарифма, то x>0. Умножим обе части на положительное число x^[log_2(x)] и положим x^[log_2(x)]=t. После этого неравенство примет вид t²+2<3*t, или t²-3*t+2<0. Перепишем его в виде (t-1)*(t-2)<0 и решим методом интервалов. Если t<1, то (t-1)*(t-2)>0; если 1<t<2, то (t-1)*(t-2)<0; если t>2, то (t-1)*(t-2)>0. Отсюда 1<t<2 и мы приходим к системе неравенств:

x^[log_2(x)]>1

x^[log_2(x)]<2

Решим первое неравенство. Для этого возьмём логарифмы по основанию 2 от обеих частей этого неравенства и получим неравенство [log_2(x)]²<log_2(1), или [log_2(x)]²>0. Отсюда log_2(x)>0 и x>1, т.е. при x∈(1;∞). Рассмотрим теперь второе неравенство.  Возьмём логарифмы по основанию 2 от обеих частей это неравенства и получим неравенство [log_2(x)]²<log_2(2), или [log_2(x)]²<1. Это неравенство распадается на два таких:

log_2(x)<1

log_2(x)>-1.

Первое имеет решение x<2, т.е. x∈(-∞;2). Второе имеет решение x>1/2, т.е. x∈(1/2;∞). Но так как x>0, то отсюда следует, что x∈(0;2). Поэтому искомое решение таково: x∈(1;2).

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота