случайная величина Х представляет собой константу, то есть просто конкретное число, которое не меняется, а всегда равно 5.
Математическое ожидание равно 5, потому что, очевидно, ожидаемое значение постоянной величины равно самой этой величине. В нашем случае – 5.
Дисперсия характеризует разброс других возможных значений вокруг мат. ожидания. У нас других значений нет: Х всегда равен 5. Поэтому никакого разброса между возможными значениями нет, дисперсия равна 0.
Как итог: математическое ожидание любой константы всегда равно этой константе, а дисперсия равна 0.
8+5<13+5, 8+4<13+4, 8-2<13-2, 8-6<13-6,
13<18; 12<17; 6<11; 2<7;
2) 8<13, 8<13, 8<13, 8<13,
8-3<13-3, 8-7<13-7, 8-(-1)<13-(-1), 8-(-4)<13-(-4),
5<10; 1<6; 8+1<13+1, 8+4<13+4,
9<14; 12<17.
Правильный вариант:
1. М = 5, D = 0.
Объяснение:
случайная величина Х представляет собой константу, то есть просто конкретное число, которое не меняется, а всегда равно 5.
Математическое ожидание равно 5, потому что, очевидно, ожидаемое значение постоянной величины равно самой этой величине. В нашем случае – 5.
Дисперсия характеризует разброс других возможных значений вокруг мат. ожидания. У нас других значений нет: Х всегда равен 5. Поэтому никакого разброса между возможными значениями нет, дисперсия равна 0.
Как итог: математическое ожидание любой константы всегда равно этой константе, а дисперсия равна 0.