А) 4 * 4 = 16 кг ягод уравнение: Пусть Х ягод тогда Х/4 часть ягод х/4 = 4 кг х = 4 * 4 х = 16 кг б) 160 : 20 = 8 альбомов Пусть Х альбомов, тогда 20х всего фото 20х = 160 х = 160 : 20 х = 8 альбомов
1) у = -х² + 12х + 5 Найдите критические точки функции и определите, какие из них является точками максимума и минимума. Находим производную и приравниваем её нулю: y' = -2x + 12 = 0. x = 12/2 = 6. То есть критическая точка только одна. Это следует из того, что график заданной функции - парабола ветвями вниз (коэффициент перед х² отрицателен). У такой параболы есть только максимум в её вершине Хо. Хо = -в/2а = -12/2*(-1) = 6. Можно провести исследование по знаку производной вблизи критической точки. х = 5.5 6 6.5 y' = -2x + 12 1 0 -1. Если производная меняет знак с + на - то это максимум функции, минимума нет.
3) найдите наибольшее и наименьшее значение функции: y=x^4-8x^2-9 на промежутке [-1;3]. y' = 4x³ -16x = 0. 4x(x²-4) = 0. Имеем 3 корня: х = 0, х = 2 и х = -2. х = -2.5 -2 -1.5 -0.5 0 0.5 1.5 2 2.5 y' = 4x³ -16x -22.5 0 10.5 7.5 0 -7.5 -10.5 0 22.5. х = -2 и 2 это минимум, у = -25. х = 0 это максимум, у = -9
уравнение: Пусть Х ягод тогда Х/4 часть ягод
х/4 = 4 кг
х = 4 * 4
х = 16 кг
б) 160 : 20 = 8 альбомов
Пусть Х альбомов, тогда 20х всего фото
20х = 160
х = 160 : 20
х = 8 альбомов
не знаю какие надо схемы, ну может так пойдет
а)
4 кг 4 кг 4 кг 4 кг
/////
1/4 1/4 1/4 1/4
б)
20 ф 20 ф 20 ф 20 ф 20 ф 20 ф 20 ф 20 ф
/////////
1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
Найдите критические точки функции и определите, какие из них является точками максимума и минимума.
Находим производную и приравниваем её нулю:
y' = -2x + 12 = 0.
x = 12/2 = 6.
То есть критическая точка только одна.
Это следует из того, что график заданной функции - парабола ветвями вниз (коэффициент перед х² отрицателен).
У такой параболы есть только максимум в её вершине Хо.
Хо = -в/2а = -12/2*(-1) = 6.
Можно провести исследование по знаку производной вблизи критической точки.
х = 5.5 6 6.5
y' = -2x + 12 1 0 -1.
Если производная меняет знак с + на - то это максимум функции, минимума нет.
3) найдите наибольшее и наименьшее значение функции: y=x^4-8x^2-9 на промежутке [-1;3].
y' = 4x³ -16x = 0.
4x(x²-4) = 0.
Имеем 3 корня: х = 0, х = 2 и х = -2.
х = -2.5 -2 -1.5 -0.5 0 0.5 1.5 2 2.5
y' = 4x³ -16x -22.5 0 10.5 7.5 0 -7.5 -10.5 0 22.5.
х = -2 и 2 это минимум, у = -25.
х = 0 это максимум, у = -9