Минимум 3 множителя. 10 и 5 нужно вычеркнуть обязательно, т.к. любое число при умножении на 10 будет оканчивать нулем, 5 нужно вычеркнуть, т.к. любое четное число дает в произведении с 5 ноль(например, 5×8=40, 5×6=30), т.е. если пятерку оставить в наборе чисел вместе с четными числами, то их произведение будет оканчиваться нулем, а если оставить 5 без четных чисел, то естб только числа из набора 1,3,5,7,9, то число, оканчивающееся на 2 мы из них не получим, т.к. при умножении нечетных чисел мы можем получить в результате только нечетные числа(например, 7×9=63, 5×7=35, 3×7=21 и т.д.). Итак, мы вычеркнули 5 и 10, у нас остались числа 1×2×3×4×6×7×8×9, это произведение равно 72576, число оканчивается на 6, нам не подходит, значит нужно вычеркнуть еще какое-либо число, допустим, мы вычеркнули 8, тогда произведение этих чисел стало равно 1×2×3×4×6×7×9=9072, оканчивается на 2, подходит. В итоге, сам ход решения: вычеркнули 10 и 5, т.к. с ними невозможно получить число, оканчивающееся на 2, но и вычеркнув их, у нас получилось произведение, не удовлетворяющее условию, поэтому, буквально методом подбора, вычеркнули еще одно число и получили нужный результат
Минимум 3 множителя. 10 и 5 нужно вычеркнуть обязательно, т.к. любое число при умножении на 10 будет оканчивать нулем, 5 нужно вычеркнуть, т.к. любое четное число дает в произведении с 5 ноль(например, 5×8=40, 5×6=30), т.е. если пятерку оставить в наборе чисел вместе с четными числами, то их произведение будет оканчиваться нулем, а если оставить 5 без четных чисел, то естб только числа из набора 1,3,5,7,9, то число, оканчивающееся на 2 мы из них не получим, т.к. при умножении нечетных чисел мы можем получить в результате только нечетные числа(например, 7×9=63, 5×7=35, 3×7=21 и т.д.). Итак, мы вычеркнули 5 и 10, у нас остались числа 1×2×3×4×6×7×8×9, это произведение равно 72576, число оканчивается на 6, нам не подходит, значит нужно вычеркнуть еще какое-либо число, допустим, мы вычеркнули 8, тогда произведение этих чисел стало равно 1×2×3×4×6×7×9=9072, оканчивается на 2, подходит. В итоге, сам ход решения: вычеркнули 10 и 5, т.к. с ними невозможно получить число, оканчивающееся на 2, но и вычеркнув их, у нас получилось произведение, не удовлетворяющее условию, поэтому, буквально методом подбора, вычеркнули еще одно число и получили нужный результат
Найдем, сколько чисел от 101 до 300 делятся на 7.
Числа от 101 до 300, делящиеся на 7, дают частные от 15 до 42 включительно. Значит, их количество равно:
Но, среди чисел от 101 до 300 есть такие, которые делятся на . Найдем их количество.
Числа от 101 до 300, делящиеся на 49, дают частные от 3 до 6 включительно. Значит, их количество равно:
Среди чисел от 101 до 300 делящихся на , а также на большие степени числа 7 нет.
Значит, 28 чисел имеют сомножитель "7". Кроме этого 4 числа имеют еще один сомножитель "7". Значит, всего сомножителей "7" имеется:
ответ: 32