Решить по дискретной
пример решения на 8
a\(b⋃c)=(a\b) ⋂(a\c)
1)для левой части:
a\( b⋃c)=a⋂(b⋃c)=a⋂b⋂c
2)для правой части:
(a\b) ⋂(a\c)=(a⋂b) ⋂(a⋂c)=a⋂b⋂c
a⋂b⋂c=a⋂b⋂c доказано
8. докажите тождественность, используя свойства операций над множествами: ((a⋂x) ⋃ (b⋂x))=( a⋂x) ⋂ (b⋂x);
9. граф g задан списком ребер (каждый элемент списка – это тройка чисел: номера двух смежных вершин и вес ребра их соединяющего): (1,4,8), (1,5,4), (1,6,6), (1,8,3), (2,3,1), (2,6,5), (3,8,7), (4,5,9), (4,7,2), (6,7,5), (7,8,1).
требуется
1) нарисовать граф g;
2) найти степенную последовательность графа g. укажите четные и нечетные вершины;
3) найти матрицу смежности графа g;
4) найти в графе одну простую цепь наибольшей длины;
5) постройте дополнение заданного графа;
написал в обьяснении Пошаговое объяснение:
а) Каждый пират должен получить (40 + 40 * 5) : 16 = 15 дукатов. Выдадим 13 пиратам по 3 монеты достоинством 5 дукатов, одному — 5 дукатов и 10 монет достоинством 1 дукат, двоим — по 15 монет достоинством 1 дукат.
б) Каждый пират должен получить 240 : 30 = 8 дукатов, поэтому нужно будет выдать каждому не менее трёх монет достоинством 1 дукат, значит всего монет достоинством 1 дукат нужно не менее 90 штук, а в сундуке их только 40. Следовательно, без сдачи и размена поделить все монеты поровну не получится.
в) Если пиратов 12 или больше, то распределим монеты так: 10 пиратов получают по 4 дуката, один — всё остальное, остальные — ничего. Тогда распределить все монеты нельзя будет по тем же причинам, что и в пункте б).
Если же их не больше 11, то всем, кроме одного, будем выдавать их доли монетами достоинством 5 дукатов, пока они не кончатся.
Если монеты достоинством 5 дукатов закончились, то останется 40 монет достоинством 1 дукат, а их можно разделить на любые целые числа. Если же монеты достоинством в 5 дукатов не кончились, то все доли, кроме одной, можно выдать до конца монетами по 1 дукату (поскольку их получат не более 10 человек, значит, израсходуется не более 40 монет достоинством 1 дукат), а последний заберёт все оставшиеся монеты.
А(2;-1;0) B(-2;3;2) C(0;0;-4) D(-4;0;2)
Координаты середины отрезков найдем по формуле
x = (x1 + x2)/2, y = (y1 + y2)/2, z = (z1 + z2)/2.
Середина отрезка АВ(0;1;1)
Середина отрезка CD(-2;0;-1)
Координаты отрезка , соединяющего эти середины, равны разности соответствующих координат точек его конца и начала:
k=(-2;-1;-2)
Длина вектора, заданного координатами, равна корню квадратному из cуммы квадратов его координат:
|k|=√(4+1+4) = 3, это и есть искомое расстояние.
ответ: расстояние между серединами отрезков АВ и CD равно 3.