Для этого надо найти в какой степени число 10 входит в разложение этого произведения. Так как 10=2*5, а в последовательном произведении всез чисел от 1 до любого натурального n двойка входит в разложение в степени большей чем пятерка, то достаточно найти в какой степени в данное поизведение входят число 5.
Чисел, которые делятся на 5 среди промежутка от 1 до 108 всего [108/5], где через [а] обозначается целая часть числа а. То есть [108/5]=[21+3/5]=21.
Мы учли все числа среди промежутка от 1 до 108, в разложение которых пятерка входит хотя бы один раз и посчитали в каждом таком числе этотразоожение по одному разу. Но есть числа, которые делятся на 25 (то есть пятерка входит в их разложение два раза), а значит мы посчитали не максимальную степень пятерки, на которую делится данное произведение. Таких чисел (которые делятся на 25) в данном промежутке [108/25]=4. Чисел которые раходятся в данном промежутке, и при этом которые делятся на большие степени пятерки не существует, так как 5^3=125>108.
Для того чтоб полностью найти,в какой степени пятерка входит в разоожение данного произведения, надо добавить количество чисел, которые делятся на 5 и на 25 среди данного помежутка. То есть всего будет 21+4=25.
Кстати, данное нахождение, в какой степени в проиведение чисел от 1 до n входит пятерка может быть применимо для любых простых чисел, а само утверждение называется теорема Лежандра.
Для этого надо найти в какой степени число 10 входит в разложение этого произведения. Так как 10=2*5, а в последовательном произведении всез чисел от 1 до любого натурального n двойка входит в разложение в степени большей чем пятерка, то достаточно найти в какой степени в данное поизведение входят число 5.
Чисел, которые делятся на 5 среди промежутка от 1 до 108 всего [108/5], где через [а] обозначается целая часть числа а. То есть [108/5]=[21+3/5]=21.
Мы учли все числа среди промежутка от 1 до 108, в разложение которых пятерка входит хотя бы один раз и посчитали в каждом таком числе этотразоожение по одному разу. Но есть числа, которые делятся на 25 (то есть пятерка входит в их разложение два раза), а значит мы посчитали не максимальную степень пятерки, на которую делится данное произведение. Таких чисел (которые делятся на 25) в данном промежутке [108/25]=4. Чисел которые раходятся в данном промежутке, и при этом которые делятся на большие степени пятерки не существует, так как 5^3=125>108.
Для того чтоб полностью найти,в какой степени пятерка входит в разоожение данного произведения, надо добавить количество чисел, которые делятся на 5 и на 25 среди данного помежутка. То есть всего будет 21+4=25.
Кстати, данное нахождение, в какой степени в проиведение чисел от 1 до n входит пятерка может быть применимо для любых простых чисел, а само утверждение называется теорема Лежандра.
ответ: 25.
1*2*..*10 оканчивается 2 нулями,которые дают умножение 2*5*10
2
15*16*...*24 оканчивается 2 нулями,которые дают умножение 15*16*20
3
10*11*...*30 оканчивается 6 нулями
10*11*...*20 оканчиваются 3 нулями,которые дают умножение 10*12*15*20
21*22*30 оканчивается 3 нулями,которые дают умножение 24*25*30
Итого 6 нулей
4
1*2*...10 нулей 2 (2*5*10)
11*12*..*20 нулей 2 (12*15*20)
21*22*...*30 нулей 3 (24*25*30)
31*32* .40 нулей 2 (32*35*40)
41*42*...*50 нулей 3 (42*45*44*50)
51*52*...*60 нулей 2 (52*55*60)
61*62* *70 нулей 2 (62*65*70)
71*72*...*80 нулей 3 (72*75*80)
81*82*..*90 нулей 2 (82*85*90)
91*92*...100 нулей 3 (92*95*100)
Итого 24 нуля