А) (х-2)(х+2) <0 х-3 Дробь меньше нуля, тогда и только тогда, когда числитель меньше нуля , а знаменатель больше нуля. Или числитель больше нуля, а знаменатель меньше нуля Рассмотрим систему неравенств: а)(x-2)(x+2)<0, б) (x-2)(x+2)>0 x-3>0 x-3<0 х-2<0, x-2>0, х-2>0, x-2<0, x+2>0, x+2<0, x+2>0, x+2<0, x-3>0 x-3>0 x-3<0 x-3<0
а) Обозначим точки пересечения лучей с отрезком BM — буквами P и R (см. рисунок), и пусть O — точка пересечения диагоналей параллелограмма, а N — точка пересечения луча AP и прямой BC.
Точка R делит медиану BM треугольника ABD в отношении 2 :1 считая от B. Следовательно, R лежит на медиане AO этого треугольника, то есть луч AR содержит диагональ AC .
б) Пусть L — точка пересечения AN и BD. Нужно найти площадь четырёхугольника LNCO. Пусть площадь параллелограмма равна S . Площадь треугольника BOC равна Найдём площадь треугольника BNL . Из подобия треугольников BPN и MPA следует, что
откуда
Теперь из подобия треугольников BNL и DAL следует, что их соответствующие высоты относятся как 1:4 , а поэтому высота треугольника BNL, проведённая к BN, составляет высоты параллелограмма, проведённой к стороне BC.
Поэтому
Следовательно, площадь четырёхугольника LNCO равна
(х-2)(х+2) <0
х-3
Дробь меньше нуля, тогда и только тогда, когда числитель меньше нуля , а знаменатель больше нуля. Или числитель больше нуля, а знаменатель меньше нуля
Рассмотрим систему неравенств:
а)(x-2)(x+2)<0, б) (x-2)(x+2)>0
x-3>0 x-3<0
х-2<0, x-2>0, х-2>0, x-2<0,
x+2>0, x+2<0, x+2>0, x+2<0,
x-3>0 x-3>0 x-3<0 x-3<0
x<2, x>2, x>2, x<2,
x>-2, x<-2, x>-2 x<-2,
x>3 x>3 x<3 x<3
пустое множество x∈(-∞;-2)∨(2;3)
ответ: (-∞;-2)∨(2;3)
а) Обозначим точки пересечения лучей с отрезком BM — буквами P и R (см. рисунок), и пусть O — точка пересечения диагоналей параллелограмма, а N — точка пересечения луча AP и прямой BC.
Точка R делит медиану BM треугольника ABD в отношении 2 :1 считая от B. Следовательно, R лежит на медиане AO этого треугольника, то есть луч AR содержит диагональ AC .
б) Пусть L — точка пересечения AN и BD. Нужно найти площадь четырёхугольника LNCO. Пусть площадь параллелограмма равна S . Площадь треугольника BOC равна Найдём площадь треугольника BNL . Из подобия треугольников BPN и MPA следует, что
откуда
Теперь из подобия треугольников BNL и DAL следует, что их соответствующие высоты относятся как 1:4 , а поэтому высота треугольника BNL, проведённая к BN, составляет высоты параллелограмма, проведённой к стороне BC.
Поэтому
Следовательно, площадь четырёхугольника LNCO равна
Пошаговое объяснение: