Формула для приближённого вычисления с дифференциала имеет вид: f(x₀+Δx)≈f(x₀)+d[f(x₀)] По условию задания имеем функцию f(x)=∛x, необходимо вычислить приближённое значение f(8,1)=∛8,1. Число 8,1 представим в виде 8+0,1, то есть х₀=8 Δх=0,1. Вычислим значение функции в точке х₀=8 f(8)=∛8=2 Дифференциал в точке находится по формуле d[f(x₀)]=f'(x₀)*Δx Находим производную функции f(x)=∛x f'(x)=(∛x)'= найдём её значение в точке х₀=8 f'(8)= d[f(8)]=0,0833*0,1=0,0083 Подставляем найденные значения в формулу вычисления с дифференциала и получаем f(8,1)=∛8,1≈2+0,0083=2,0083
Відповідь:
Покрокове пояснення:
Точки можно соединять только если они находятся в одной плоскости, также и прямие, ищем пересечения на плоскости
1. К1- точка пересечения прямих 23 и А1В1
Соединяем К1 и точку 1, пересечение етой прямой с АВ дает точку 4
2. К3 - точка пересечения прямихиВВ1 и 14
К2- точка пересечения прямих 23 и В1С1
Точки К3 и К2 лежат в одной плоскостии ВСС1В1
Поетому пересечение прямих К2К3 и СС1 дает точку 6, а с пересечением ВС точку 5
3. Соединяем точки 123465 имеем наше пересечение
На второй фотографии: так как точки 1 и 2, 2 и 3, 3 и 1 лежат на соответствующих гранях, то их просто соединяют
f(x₀+Δx)≈f(x₀)+d[f(x₀)]
По условию задания имеем функцию f(x)=∛x, необходимо вычислить приближённое значение f(8,1)=∛8,1.
Число 8,1 представим в виде 8+0,1, то есть х₀=8 Δх=0,1.
Вычислим значение функции в точке х₀=8
f(8)=∛8=2
Дифференциал в точке находится по формуле
d[f(x₀)]=f'(x₀)*Δx
Находим производную функции f(x)=∛x
f'(x)=(∛x)'=
найдём её значение в точке х₀=8
f'(8)=
d[f(8)]=0,0833*0,1=0,0083
Подставляем найденные значения в формулу вычисления с дифференциала и получаем
f(8,1)=∛8,1≈2+0,0083=2,0083